Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Research Article

Carotid Arterial Stiffness and Cerebral Blood Flow in Amnestic Mild Cognitive Impairment

Author(s): Tsubasa Tomoto, Jun Sugawara, Takashi Tarumi, Collin Chiles, Bryon Curtis, Evan P. Pasha, C. Munro Cullum and Rong Zhang*

Volume 17, Issue 12, 2020

Page: [1115 - 1125] Pages: 11

DOI: 10.2174/1567205018666210113155646

Price: $65

Abstract

Background: Central arterial stiffness is an emerging risk factor of age-related cognitive impairment and Alzheimer’s disease (AD). However, the underlying pathophysiological mechanisms remain unclear.

Objective: We tested the hypothesis that carotid arterial stiffness is associated with reduced cerebral blood flow (CBF) and increased cerebrovascular resistance (CVR) in patients with amnestic mild cognitive impairment (MCI), a prodromal stage of AD.

Methods: Fifty-four patients with amnestic MCI and 24 cognitively normal subjects (CN) of similar age and sex to MCI patients underwent measurements of CBF and carotid β-stiffness index using ultrasonography and applanation tonometry. Total CBF was measured as the sum of CBF from both the internal carotid and vertebral arteries, and divided by total brain tissue mass (assessed with MRI) to obtain normalized CBF (nCBF).

Results: Relative to CN subjects, MCI patients showed lower nCBF (53.3 ± 3.2 vs 50.4±3.4 mL/100 g/min, P < 0.001) and higher CVR (0.143 ± 0.019 vs 0.156 ± 0.023 mmHg/mL/min, P < 0.015). Multiple linear regression analysis showed that nCBF was negatively associated with carotid β-stiffness index (B = -0.822, P < 0.001); CVR was positively associated with carotid systolic pressure (B = 0.001, P < 0.001) after adjustment for age, sex, body mass index, and MCI status.

Conclusion: These findings suggest that carotid artery stiffening may contribute at least in part to the reduced nCBF and increased CVR in patients with MCI associated with augmented carotid arterial pulsatility.

Keywords: Amnestic mild cognitive impairment, carotid arterial stiffness, cerebral hypoperfusion, cerebrovascular resistance, pulsatile cerebral blood flow, transcranial Doppler, ultrasonography.

[1]
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(5): 347-60.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[2]
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18(7): 419-34.
[http://dx.doi.org/10.1038/nrn.2017.48] [PMID: 28515434]
[3]
Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131(19): 2451-68.
[http://dx.doi.org/10.1042/CS20160727] [PMID: 28963120]
[4]
Jefferson AL, Cambronero FE, Liu D, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation 2018; 138(18): 1951-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.032410] [PMID: 30018169]
[5]
Tarumi T, Gonzales MM, Fallow B, et al. Central artery stiffness, neuropsychological function, and cerebral perfusion in sedentary and endurance-trained middle-aged adults. J Hypertens 2013; 31(12): 2400-9.
[http://dx.doi.org/10.1097/HJH.0b013e328364decc] [PMID: 24220591]
[6]
Jochemsen HM, Muller M, Bots ML, et al. Arterial stiffness and progression of structural brain changes: The SMART-MR study. Neurology 2015; 84(5): 448-55.
[http://dx.doi.org/10.1212/WNL.0000000000001201] [PMID: 25552578]
[7]
Singer J, Trollor JN, Baune BT, Sachdev PS, Smith E. Arterial stiffness, the brain and cognition: A systematic review. Ageing Res Rev 2014; 15: 16-27.
[http://dx.doi.org/10.1016/j.arr.2014.02.002] [PMID: 24548924]
[8]
Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58(12): 1985-92.
[http://dx.doi.org/10.1001/archneur.58.12.1985] [PMID: 11735772]
[9]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[10]
Meyer ML, Palta P, Tanaka H, et al. Association of central arterial stiffness and pressure pulsatility with mild cognitive impairment and dementia: The Atherosclerosis Risk in Communities Study-Neurocognitive Study (ARIC-NCS). J Alzheimers Dis 2017; 57(1): 195-204.
[http://dx.doi.org/10.3233/JAD-161041] [PMID: 28222517]
[11]
Liu J, Zhu YS, Khan MA, et al. Global brain hypoperfusion and oxygenation in amnestic mild cognitive impairment. Alzheimers Dement 2014; 10(2): 162-70.
[http://dx.doi.org/10.1016/j.jalz.2013.04.507] [PMID: 23871763]
[12]
Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage J Appl Physiol (1985) 2008; 105(5): 1652-60.
[http://dx.doi.org/10.1152/japplphysiol.90549.2008] [PMID: 18772322]
[13]
Rabkin SW. Arterial stiffness: Detection and consequences in cognitive impairment and dementia of the elderly. J Alzheimers Dis 2012; 32(3): 541-9.
[http://dx.doi.org/10.3233/JAD-2012-120757] [PMID: 22886012]
[14]
Zeki Al Hazzouri A, Yaffe K. Arterial stiffness and cognitive function in the elderly. J Alzheimers Dis 2014; 42(4): S503-14.
[http://dx.doi.org/10.3233/JAD-141563] [PMID: 25351110]
[15]
Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588-605.
[http://dx.doi.org/10.1093/eurheartj/ehl254] [PMID: 17000623]
[16]
van Sloten TT, Sedaghat S, Laurent S, et al. Carotid stiffness is associated with incident stroke: A systematic review and individual participant data meta-analysis. J Am Coll Cardiol 2015; 66(19): 2116-25.
[http://dx.doi.org/10.1016/j.jacc.2015.08.888] [PMID: 26541923]
[17]
Shibata S, Fujimoto N, Hastings JL, et al. The effect of lifelong exercise frequency on arterial stiffness. J Physiol 2018; 596(14): 2783-95.
[http://dx.doi.org/10.1113/JP275301] [PMID: 29781119]
[18]
Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: Risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol 2014; 5: 6.
[http://dx.doi.org/10.3389/fphys.2014.00006] [PMID: 24478719]
[19]
Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57(6): 769-74.
[http://dx.doi.org/10.3171/jns.1982.57.6.0769] [PMID: 7143059]
[20]
Khan MA, Liu J, Tarumi T, et al. Measurement of cerebral blood flow using phase contrast magnetic resonance imaging and duplex ultrasonography. J Cereb Blood Flow Metab 2017; 37(2): 541-9.
[http://dx.doi.org/10.1177/0271678X16631149] [PMID: 26873888]
[21]
Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30(3): 445-8.
[http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0] [PMID: 22278144]
[22]
Stein JH, Korcarz CE, Hurst RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. J Am Soc Echocardiogr 2008; 21(2): 93-111.
[http://dx.doi.org/10.1016/j.echo.2007.11.011] [PMID: 18261694]
[23]
Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989; 80(6): 1652-9.
[http://dx.doi.org/10.1161/01.CIR.80.6.1652] [PMID: 2598428]
[24]
Tarumi T, Ayaz Khan M, Liu J, et al. Cerebral hemodynamics in normal aging: Central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab 2014; 34(6): 971-8.
[http://dx.doi.org/10.1038/jcbfm.2014.44] [PMID: 24643081]
[25]
Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM. Noninvasive assessment of local pulse pressure: Importance of brachial-to-radial pressure amplification. Hypertension 2005; 46(1): 244-8.
[http://dx.doi.org/10.1161/01.HYP.0000166723.07809.7e] [PMID: 15911747]
[26]
Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 1989; 80(1): 78-86.
[http://dx.doi.org/10.1161/01.CIR.80.1.78] [PMID: 2610739]
[27]
Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000; 102(11): 1270-5.
[http://dx.doi.org/10.1161/01.CIR.102.11.1270] [PMID: 10982542]
[28]
Tomoto T, Sugawara J, Nogami Y, Aonuma K, Maeda S. The influence of central arterial compliance on cerebrovascular hemodynamics: Insights from endurance training intervention J Appl Physiol (1985) 2015; 119(5): 445-51.
[http://dx.doi.org/10.1152/japplphysiol.00129.2015] [PMID: 26139214]
[29]
Beishon L, Haunton VJ, Panerai RB, Robinson TG. Cerebral hemodynamics in mild cognitive impairment: A systematic review. J Alzheimers Dis 2017; 59(1): 369-85.
[http://dx.doi.org/10.3233/JAD-170181] [PMID: 28671118]
[30]
Nichols WW, McDonald DA. McDonald’s blood flow in arteries theoretical, experimental and clinical principles. 6th ed. London: Hodder Arnold 2011.
[31]
Zhang R, Zuckerman JH, Levine BD. Spontaneous fluctuations in cerebral blood flow: Insights from extended-duration recordings in humans. Am J Physiol Heart Circ Physiol 2000; 278(6): H1848-55.
[http://dx.doi.org/10.1152/ajpheart.2000.278.6.H1848] [PMID: 10843881]
[32]
Herscovitch P, Raichle ME. What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 1985; 5(1): 65-9.
[http://dx.doi.org/10.1038/jcbfm.1985.9] [PMID: 3871783]
[33]
Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31(3): 968-80.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.021] [PMID: 16530430]
[34]
Slinker BK, Glantz SA. Multiple linear regression: Accounting for multiple simultaneous determinants of a continuous dependent variable. Circulation 2008; 117(13): 1732-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.654376] [PMID: 18378626]
[35]
de Eulate RG, Goñi I, Galiano A, et al. Reduced cerebral blood flow in mild cognitive impairment assessed using phase-contrast MRI. J Alzheimers Dis 2017; 58(2): 585-95.
[http://dx.doi.org/10.3233/JAD-161222] [PMID: 28453476]
[36]
Glodzik L, Rusinek H, Brys M, et al. Framingham cardiovascular risk profile correlates with impaired hippocampal and cortical vasoreactivity to hypercapnia. J Cereb Blood Flow Metab 2011; 31(2): 671-9.
[http://dx.doi.org/10.1038/jcbfm.2010.145] [PMID: 20842159]
[37]
Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 2009; 250(3): 856-66.
[http://dx.doi.org/10.1148/radiol.2503080751] [PMID: 19164119]
[38]
Binnewijzend MA, Kuijer JP, Benedictus MR, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 2013; 267(1): 221-30.
[http://dx.doi.org/10.1148/radiol.12120928] [PMID: 23238159]
[39]
Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 2011; 77(22): 1977-85.
[http://dx.doi.org/10.1212/WNL.0b013e31823a0ef7] [PMID: 22094481]
[40]
Edvinsson L, Krause DN. Cerebral blood flow and metabolism. 2nd ed. Philadelphi, PA, USA: Lippincott Williams & Wilkins 2002.
[41]
Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 2006; 63(5): 693-9.
[http://dx.doi.org/10.1001/archneur.63.5.693] [PMID: 16682538]
[42]
Morris JC, Storandt M, McKeel DW Jr, et al. Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 1996; 46(3): 707-19.
[http://dx.doi.org/10.1212/WNL.46.3.707] [PMID: 8618671]
[43]
Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006; 355(25): 2652-63.
[http://dx.doi.org/10.1056/NEJMoa054625] [PMID: 17182990]
[44]
Wu Z, Guo H, Chow N, et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005; 11(9): 959-65.
[http://dx.doi.org/10.1038/nm1287] [PMID: 16116430]
[45]
Belz GG. Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 1995; 9(1): 73-83.
[http://dx.doi.org/10.1007/BF00877747] [PMID: 7786838]
[46]
O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension 2005; 46(1): 200-4.
[http://dx.doi.org/10.1161/01.HYP.0000168052.00426.65] [PMID: 15911742]
[47]
Cermakova P, Ding J, Meirelles O, et al. Carotid intima-media thickness and markers of brain health in a bi-racial middle-aged cohort: CARDIA Brain MRI Sub-study. J Gerontol A Biol Sci Med Sci 2019.
[PMID: 30796828]
[48]
Sojkova J, Najjar SS, Beason-Held LL, et al. Intima-media thickness and regional cerebral blood flow in older adults. Stroke 2010; 41(2): 273-9.
[http://dx.doi.org/10.1161/STROKEAHA.109.566810] [PMID: 20044526]
[49]
Davis MJ. Myogenic response gradient in an arteriolar network. Am J Physiol 1993; 264(6 Pt 2): H2168-79.
[PMID: 8322948]
[50]
Jacobsen JC, Mulvany MJ, Holstein-Rathlou NH. A mechanism for arteriolar remodeling based on maintenance of smooth muscle cell activation. Am J Physiol Regul Integr Comp Physiol 2008; 294(4): R1379-89.
[http://dx.doi.org/10.1152/ajpregu.00407.2007] [PMID: 18184768]
[51]
de Heus RAA, de Jong DLK, Sanders ML, et al. Dynamic regulation of cerebral blood flow in patients with Alzheimer disease. Hypertension 2018; 72(1): 139-50.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10900] [PMID: 29844143]
[52]
Pasha EP, Rutjes E, Tomoto T, et al. Carotid stiffness is associated with brain amyloid-β burden in amnestic mild cognitive impairment. J Alzheimers Dis 2020; 74(3): 925-35.
[http://dx.doi.org/10.3233/JAD-191073] [PMID: 32083583]
[53]
Yew B, Nation DA. Cerebrovascular resistance: Effects on cognitive decline, cortical atrophy, and progression to dementia. Brain 2017; 140(7): 1987-2001.
[http://dx.doi.org/10.1093/brain/awx112] [PMID: 28575149]
[54]
de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9(1): 35-66.
[http://dx.doi.org/10.2174/156720512799015037] [PMID: 22329651]
[55]
Hoscheidt SM, Kellawan JM, Berman SE, et al. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults. J Cereb Blood Flow Metab 2017; 37(6): 2249-61.
[http://dx.doi.org/10.1177/0271678X16663214] [PMID: 27488909]
[56]
Sengstock DM, Vaitkevicius PV, Supiano MA. Arterial stiffness is related to insulin resistance in nondiabetic hypertensive older adults. J Clin Endocrinol Metab 2005; 90(5): 2823-7.
[http://dx.doi.org/10.1210/jc.2004-1686] [PMID: 15728211]
[57]
Topel ML, Shen J, Morris AA, et al. Comparisons of the framingham and pooled cohort equation risk scores for detecting subclinical vascular disease in blacks versus whites. Am J Cardiol 2018; 121(5): 564-9.
[http://dx.doi.org/10.1016/j.amjcard.2017.11.031] [PMID: 29361288]
[58]
Gottesman RF, Fornage M, Knopman DS, Mosley TH. Brain aging in african-americans: The atherosclerosis risk in communities (ARIC) experience. Curr Alzheimer Res 2015; 12(7): 607-13.
[http://dx.doi.org/10.2174/1567205012666150701102445] [PMID: 26239037]
[59]
Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[60]
de la Torre JC. Cerebral hemodynamics and vascular risk factors: Setting the stage for Alzheimer’s disease. J Alzheimers Dis 2012; 32(3): 553-67.
[http://dx.doi.org/10.3233/JAD-2012-120793] [PMID: 22842871]
[61]
Spence JD. Blood pressure gradients in the brain: Their importance to understanding pathogenesis of cerebral small vessel disease. Brain Sci 2019; 9(2)E21
[http://dx.doi.org/10.3390/brainsci9020021] [PMID: 30678095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy