Abstract
We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS.
Keywords: Stem cells, Neural stem cells, Multipotency, Neurotrophic factors, Neural Repair, Spinal Cord Injury, central nervous system (CNS), oligodendroglia, biofunctional multipotency
Current Neuropharmacology
Title: Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research
Volume: 9 Issue: 4
Author(s): Wang, Richard L, Sidman, Evan Y, Snyder, Robert, Langer, D. Eugene, Redmond Jr., Maryrose P, Sullivan, Junmei, Yang D, Dustin R, Wakeman, Serdar, Kabatas, Jianxue, Li, Alexander E, Ropper, Dou and Yu
Affiliation:
Keywords: Stem cells, Neural stem cells, Multipotency, Neurotrophic factors, Neural Repair, Spinal Cord Injury, central nervous system (CNS), oligodendroglia, biofunctional multipotency
Abstract: We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the “logic” behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the “multipotency” of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS.
Export Options
About this article
Cite this article as:
Wang , L Richard, Sidman , Y Evan, Snyder , Robert , Langer , Eugene D., Redmond Jr. , P Maryrose, Sullivan , Junmei , D Yang, R Dustin, Wakeman , Serdar , Kabatas , Jianxue , Li , E Alexander, Ropper , Dou and Yu , Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research, Current Neuropharmacology 2011; 9 (4) . https://dx.doi.org/10.2174/157015911798376299
DOI https://dx.doi.org/10.2174/157015911798376299 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
The mTOR Signaling Network: Insights from Its Role During Embryonic Development
Current Medicinal Chemistry Novel Targeting of Apoptosis Pathways for Prostate Cancer Therapy
Current Cancer Drug Targets Identifying S100B as a Biomarker and a Therapeutic Target For Brain Injury and Multiple Diseases
Current Medicinal Chemistry Interlocked Systems in Nanomedicine
Current Topics in Medicinal Chemistry Clinical Molecular Imaging with PET Agents Other than 18F-FDG
Current Pharmaceutical Biotechnology Intersection of MicroRNA and Gene Regulatory Networks and their Implication in Cancer
Current Pharmaceutical Biotechnology Role of Early Growth Response-1 in the Development of Alcohol-Induced Steatosis
Current Molecular Pharmacology EGF-R Small Inhibitors and Anti-EGF-R Antibodies: Advantages and Limits of a New Avenue in Anticancer Therapy
Recent Patents on Anti-Cancer Drug Discovery Urokinase-type Plasminogen Activator (uPA) and its Receptor (uPAR): Development of Antagonists of uPA / uPAR Interaction and their Effects In Vitro and In Vivo
Current Pharmaceutical Design Resveratrol and Neurodegenerative Diseases: Activation of SIRT1 as the Potential Pathway towards Neuroprotection
Current Neurovascular Research Application of Functional Genomics to Bronchial Asthma
Current Pharmacogenomics miRNAs in Cancer Prevention and Treatment and as Molecular Targets for Natural Product Anticancer Agents
Current Cancer Drug Targets Design and Virtual Screening Towards Synthesis of Novel Substituted Thiosemicarbozones as Ribonuleotide Reductase (RNR) Inhibitors with Improved Cellular Trafficking and Anticancer Activity
Current Topics in Medicinal Chemistry The Mechanism of Action of Salsolinol in Brain: Implications in Parkinson’s Disease
CNS & Neurological Disorders - Drug Targets Neuropharmacology of the Endocannabinoid Signaling System-Molecular Mechanisms, Biological Actions and Synaptic Plasticity
Current Neuropharmacology MMP14 Regulates VEGFR3 Expression on Corneal Epithelial Cells
Protein & Peptide Letters Preface
Current Pharmaceutical Design Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs
Current Drug Targets Chemoradiation for Glioblastoma
Current Drug Therapy Targeting Malignancies with Disulfiram (Antabuse): Multidrug Resistance, Angiogenesis, and Proteasome
Current Cancer Drug Targets