Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

General Research Article

健忘性轻度认知障碍患者的颈动脉僵硬度和脑血流量

卷 17, 期 12, 2020

页: [1115 - 1125] 页: 11

弟呕挨: 10.2174/1567205018666210113155646

价格: $65

摘要

背景:中央动脉僵硬是与年龄相关的认知障碍和阿尔茨海默氏病(AD)的新兴危险因素。然而,潜在的病理生理机制仍不清楚。 目的:我们检验了以下假设:在AD的前驱阶段轻度认知障碍(MCI)患者中,颈动脉僵硬度与脑血流量(CBF)降低和脑血管阻力(CVR)升高有关。 方法:对54例失忆性MCI患者和24名年龄和性别与MCI患者相似的认知正常受试者(CN)进行超声和压平眼压计测量CBF和颈动脉β-刚度指数。将总CBF量作为来自颈内动脉和椎动脉的CBF的总和,除以总脑组织质量(通过MRI评估)即可获得标准化CBF(nCBF)。 结果:相对于CN受试者,MCI患者的nCBF较低(53.3±3.2 vs 50.4±3.4 mL / 100 g / min,P <0.001)和CVR较高(0.143±0.019 vs 0.156±0.023 mmHg / mL / min,P < 0.015)。多元线性回归分析表明,nCBF与颈动脉β-刚度指数呈负相关(B = -0.822,P <0.001)。在调整年龄,性别,体重指数和MCI状态后,CVR与颈动脉收缩压呈正相关(B = 0.001,P <0.001)。 结论:这些发现表明,MCI伴颈动脉搏动增加的患者,颈动脉僵硬可能至少部分地导致nCBF降低和CVR升高。

关键词: 轻度遗忘性认知障碍,颈动脉僵硬,脑灌注不足,脑血管阻力, 搏动性脑血流,经颅多普勒,超声检查。

[1]
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(5): 347-60.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[2]
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18(7): 419-34.
[http://dx.doi.org/10.1038/nrn.2017.48] [PMID: 28515434]
[3]
Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond) 2017; 131(19): 2451-68.
[http://dx.doi.org/10.1042/CS20160727] [PMID: 28963120]
[4]
Jefferson AL, Cambronero FE, Liu D, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation 2018; 138(18): 1951-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.032410] [PMID: 30018169]
[5]
Tarumi T, Gonzales MM, Fallow B, et al. Central artery stiffness, neuropsychological function, and cerebral perfusion in sedentary and endurance-trained middle-aged adults. J Hypertens 2013; 31(12): 2400-9.
[http://dx.doi.org/10.1097/HJH.0b013e328364decc] [PMID: 24220591]
[6]
Jochemsen HM, Muller M, Bots ML, et al. Arterial stiffness and progression of structural brain changes: The SMART-MR study. Neurology 2015; 84(5): 448-55.
[http://dx.doi.org/10.1212/WNL.0000000000001201] [PMID: 25552578]
[7]
Singer J, Trollor JN, Baune BT, Sachdev PS, Smith E. Arterial stiffness, the brain and cognition: A systematic review. Ageing Res Rev 2014; 15: 16-27.
[http://dx.doi.org/10.1016/j.arr.2014.02.002] [PMID: 24548924]
[8]
Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol 2001; 58(12): 1985-92.
[http://dx.doi.org/10.1001/archneur.58.12.1985] [PMID: 11735772]
[9]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[10]
Meyer ML, Palta P, Tanaka H, et al. Association of central arterial stiffness and pressure pulsatility with mild cognitive impairment and dementia: The Atherosclerosis Risk in Communities Study-Neurocognitive Study (ARIC-NCS). J Alzheimers Dis 2017; 57(1): 195-204.
[http://dx.doi.org/10.3233/JAD-161041] [PMID: 28222517]
[11]
Liu J, Zhu YS, Khan MA, et al. Global brain hypoperfusion and oxygenation in amnestic mild cognitive impairment. Alzheimers Dement 2014; 10(2): 162-70.
[http://dx.doi.org/10.1016/j.jalz.2013.04.507] [PMID: 23871763]
[12]
Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: Implications for end-organ damage J Appl Physiol (1985) 2008; 105(5): 1652-60.
[http://dx.doi.org/10.1152/japplphysiol.90549.2008] [PMID: 18772322]
[13]
Rabkin SW. Arterial stiffness: Detection and consequences in cognitive impairment and dementia of the elderly. J Alzheimers Dis 2012; 32(3): 541-9.
[http://dx.doi.org/10.3233/JAD-2012-120757] [PMID: 22886012]
[14]
Zeki Al Hazzouri A, Yaffe K. Arterial stiffness and cognitive function in the elderly. J Alzheimers Dis 2014; 42(4): S503-14.
[http://dx.doi.org/10.3233/JAD-141563] [PMID: 25351110]
[15]
Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588-605.
[http://dx.doi.org/10.1093/eurheartj/ehl254] [PMID: 17000623]
[16]
van Sloten TT, Sedaghat S, Laurent S, et al. Carotid stiffness is associated with incident stroke: A systematic review and individual participant data meta-analysis. J Am Coll Cardiol 2015; 66(19): 2116-25.
[http://dx.doi.org/10.1016/j.jacc.2015.08.888] [PMID: 26541923]
[17]
Shibata S, Fujimoto N, Hastings JL, et al. The effect of lifelong exercise frequency on arterial stiffness. J Physiol 2018; 596(14): 2783-95.
[http://dx.doi.org/10.1113/JP275301] [PMID: 29781119]
[18]
Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: Risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol 2014; 5: 6.
[http://dx.doi.org/10.3389/fphys.2014.00006] [PMID: 24478719]
[19]
Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57(6): 769-74.
[http://dx.doi.org/10.3171/jns.1982.57.6.0769] [PMID: 7143059]
[20]
Khan MA, Liu J, Tarumi T, et al. Measurement of cerebral blood flow using phase contrast magnetic resonance imaging and duplex ultrasonography. J Cereb Blood Flow Metab 2017; 37(2): 541-9.
[http://dx.doi.org/10.1177/0271678X16631149] [PMID: 26873888]
[21]
Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30(3): 445-8.
[http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0] [PMID: 22278144]
[22]
Stein JH, Korcarz CE, Hurst RT, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. J Am Soc Echocardiogr 2008; 21(2): 93-111.
[http://dx.doi.org/10.1016/j.echo.2007.11.011] [PMID: 18261694]
[23]
Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989; 80(6): 1652-9.
[http://dx.doi.org/10.1161/01.CIR.80.6.1652] [PMID: 2598428]
[24]
Tarumi T, Ayaz Khan M, Liu J, et al. Cerebral hemodynamics in normal aging: Central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab 2014; 34(6): 971-8.
[http://dx.doi.org/10.1038/jcbfm.2014.44] [PMID: 24643081]
[25]
Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM. Noninvasive assessment of local pulse pressure: Importance of brachial-to-radial pressure amplification. Hypertension 2005; 46(1): 244-8.
[http://dx.doi.org/10.1161/01.HYP.0000166723.07809.7e] [PMID: 15911747]
[26]
Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 1989; 80(1): 78-86.
[http://dx.doi.org/10.1161/01.CIR.80.1.78] [PMID: 2610739]
[27]
Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000; 102(11): 1270-5.
[http://dx.doi.org/10.1161/01.CIR.102.11.1270] [PMID: 10982542]
[28]
Tomoto T, Sugawara J, Nogami Y, Aonuma K, Maeda S. The influence of central arterial compliance on cerebrovascular hemodynamics: Insights from endurance training intervention J Appl Physiol (1985) 2015; 119(5): 445-51.
[http://dx.doi.org/10.1152/japplphysiol.00129.2015] [PMID: 26139214]
[29]
Beishon L, Haunton VJ, Panerai RB, Robinson TG. Cerebral hemodynamics in mild cognitive impairment: A systematic review. J Alzheimers Dis 2017; 59(1): 369-85.
[http://dx.doi.org/10.3233/JAD-170181] [PMID: 28671118]
[30]
Nichols WW, McDonald DA. McDonald’s blood flow in arteries theoretical, experimental and clinical principles. 6th ed. London: Hodder Arnold 2011.
[31]
Zhang R, Zuckerman JH, Levine BD. Spontaneous fluctuations in cerebral blood flow: Insights from extended-duration recordings in humans. Am J Physiol Heart Circ Physiol 2000; 278(6): H1848-55.
[http://dx.doi.org/10.1152/ajpheart.2000.278.6.H1848] [PMID: 10843881]
[32]
Herscovitch P, Raichle ME. What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 1985; 5(1): 65-9.
[http://dx.doi.org/10.1038/jcbfm.1985.9] [PMID: 3871783]
[33]
Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31(3): 968-80.
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.021] [PMID: 16530430]
[34]
Slinker BK, Glantz SA. Multiple linear regression: Accounting for multiple simultaneous determinants of a continuous dependent variable. Circulation 2008; 117(13): 1732-7.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.654376] [PMID: 18378626]
[35]
de Eulate RG, Goñi I, Galiano A, et al. Reduced cerebral blood flow in mild cognitive impairment assessed using phase-contrast MRI. J Alzheimers Dis 2017; 58(2): 585-95.
[http://dx.doi.org/10.3233/JAD-161222] [PMID: 28453476]
[36]
Glodzik L, Rusinek H, Brys M, et al. Framingham cardiovascular risk profile correlates with impaired hippocampal and cortical vasoreactivity to hypercapnia. J Cereb Blood Flow Metab 2011; 31(2): 671-9.
[http://dx.doi.org/10.1038/jcbfm.2010.145] [PMID: 20842159]
[37]
Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 2009; 250(3): 856-66.
[http://dx.doi.org/10.1148/radiol.2503080751] [PMID: 19164119]
[38]
Binnewijzend MA, Kuijer JP, Benedictus MR, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 2013; 267(1): 221-30.
[http://dx.doi.org/10.1148/radiol.12120928] [PMID: 23238159]
[39]
Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 2011; 77(22): 1977-85.
[http://dx.doi.org/10.1212/WNL.0b013e31823a0ef7] [PMID: 22094481]
[40]
Edvinsson L, Krause DN. Cerebral blood flow and metabolism. 2nd ed. Philadelphi, PA, USA: Lippincott Williams & Wilkins 2002.
[41]
Apostolova LG, Dutton RA, Dinov ID, et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 2006; 63(5): 693-9.
[http://dx.doi.org/10.1001/archneur.63.5.693] [PMID: 16682538]
[42]
Morris JC, Storandt M, McKeel DW Jr, et al. Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 1996; 46(3): 707-19.
[http://dx.doi.org/10.1212/WNL.46.3.707] [PMID: 8618671]
[43]
Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 2006; 355(25): 2652-63.
[http://dx.doi.org/10.1056/NEJMoa054625] [PMID: 17182990]
[44]
Wu Z, Guo H, Chow N, et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005; 11(9): 959-65.
[http://dx.doi.org/10.1038/nm1287] [PMID: 16116430]
[45]
Belz GG. Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 1995; 9(1): 73-83.
[http://dx.doi.org/10.1007/BF00877747] [PMID: 7786838]
[46]
O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: Cause and logic of therapy. Hypertension 2005; 46(1): 200-4.
[http://dx.doi.org/10.1161/01.HYP.0000168052.00426.65] [PMID: 15911742]
[47]
Cermakova P, Ding J, Meirelles O, et al. Carotid intima-media thickness and markers of brain health in a bi-racial middle-aged cohort: CARDIA Brain MRI Sub-study. J Gerontol A Biol Sci Med Sci 2019.
[PMID: 30796828]
[48]
Sojkova J, Najjar SS, Beason-Held LL, et al. Intima-media thickness and regional cerebral blood flow in older adults. Stroke 2010; 41(2): 273-9.
[http://dx.doi.org/10.1161/STROKEAHA.109.566810] [PMID: 20044526]
[49]
Davis MJ. Myogenic response gradient in an arteriolar network. Am J Physiol 1993; 264(6 Pt 2): H2168-79.
[PMID: 8322948]
[50]
Jacobsen JC, Mulvany MJ, Holstein-Rathlou NH. A mechanism for arteriolar remodeling based on maintenance of smooth muscle cell activation. Am J Physiol Regul Integr Comp Physiol 2008; 294(4): R1379-89.
[http://dx.doi.org/10.1152/ajpregu.00407.2007] [PMID: 18184768]
[51]
de Heus RAA, de Jong DLK, Sanders ML, et al. Dynamic regulation of cerebral blood flow in patients with Alzheimer disease. Hypertension 2018; 72(1): 139-50.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10900] [PMID: 29844143]
[52]
Pasha EP, Rutjes E, Tomoto T, et al. Carotid stiffness is associated with brain amyloid-β burden in amnestic mild cognitive impairment. J Alzheimers Dis 2020; 74(3): 925-35.
[http://dx.doi.org/10.3233/JAD-191073] [PMID: 32083583]
[53]
Yew B, Nation DA. Cerebrovascular resistance: Effects on cognitive decline, cortical atrophy, and progression to dementia. Brain 2017; 140(7): 1987-2001.
[http://dx.doi.org/10.1093/brain/awx112] [PMID: 28575149]
[54]
de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9(1): 35-66.
[http://dx.doi.org/10.2174/156720512799015037] [PMID: 22329651]
[55]
Hoscheidt SM, Kellawan JM, Berman SE, et al. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults. J Cereb Blood Flow Metab 2017; 37(6): 2249-61.
[http://dx.doi.org/10.1177/0271678X16663214] [PMID: 27488909]
[56]
Sengstock DM, Vaitkevicius PV, Supiano MA. Arterial stiffness is related to insulin resistance in nondiabetic hypertensive older adults. J Clin Endocrinol Metab 2005; 90(5): 2823-7.
[http://dx.doi.org/10.1210/jc.2004-1686] [PMID: 15728211]
[57]
Topel ML, Shen J, Morris AA, et al. Comparisons of the framingham and pooled cohort equation risk scores for detecting subclinical vascular disease in blacks versus whites. Am J Cardiol 2018; 121(5): 564-9.
[http://dx.doi.org/10.1016/j.amjcard.2017.11.031] [PMID: 29361288]
[58]
Gottesman RF, Fornage M, Knopman DS, Mosley TH. Brain aging in african-americans: The atherosclerosis risk in communities (ARIC) experience. Curr Alzheimer Res 2015; 12(7): 607-13.
[http://dx.doi.org/10.2174/1567205012666150701102445] [PMID: 26239037]
[59]
Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[60]
de la Torre JC. Cerebral hemodynamics and vascular risk factors: Setting the stage for Alzheimer’s disease. J Alzheimers Dis 2012; 32(3): 553-67.
[http://dx.doi.org/10.3233/JAD-2012-120793] [PMID: 22842871]
[61]
Spence JD. Blood pressure gradients in the brain: Their importance to understanding pathogenesis of cerebral small vessel disease. Brain Sci 2019; 9(2)E21
[http://dx.doi.org/10.3390/brainsci9020021] [PMID: 30678095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy