Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Advances in the Synthesis of Pyrazole Derivatives

Author(s): Cheriya Mukkolakkal Abdulla Afsina, Thaipparambil Aneeja, Mohan Neetha and Gopinathan Anilkumar*

Volume 18, Issue 2, 2021

Published on: 09 November, 2020

Page: [197 - 213] Pages: 17

DOI: 10.2174/1570179417666201109151036

Price: $65

Abstract

Pyrazole and its derivatives have gained wide attention in pharmaceutical, agrochemical and biological fields as well as in industry. They exhibit various biological activities such as anti-pyretic, anti-microbial, anti- inflammatory, anti-tumor, anti-viral, anti-histaminic, anti-convulsant, fungicidal, insecticidal, etc. In this review, we summarise the recent advances in the synthesis of pyrazole derivatives using various methodologies and covers literature from 2017-2020.

Keywords: Pyrazole, heterocycle, hydrazine, phenylhydrazine, tosylhydrazine, hydrazone.

Graphical Abstract

[1]
Rajendra Prasad, Y.; Lakshmana Rao, A.; Prasoona, L.; Murali, K.; Ravi Kumar, P. Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2′'-hydroxy naphthalen-1′'-yl)-1,5-diphenyl-2-pyrazolines. Bioorg. Med. Chem. Lett., 2005, 15(22), 5030-5034.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.040] [PMID: 16168645]
[2]
El-Moghazy, S.M.; Barsoum, F.F.; Rahman, H.M.A.; Marzouk, A.A. Synthesis and anti-inflammatory activity of some pyrazolederivatives. Med. Chem. Res., 2012, 21, 1722-1733.
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[3]
Theobald, R.S. Rodd’s Chemistry of Carbon Compounds; Amsterdam: Elsevier Science Publishers B. V., 1998, p. 59.
[4]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56, 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[5]
Bekhit, A.A.; Ashour, H.M.A.; Guemei, A.A. Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch. Pharm. (Weinheim), 2005, 338(4), 167-174.
[http://dx.doi.org/10.1002/ardp.200400940] [PMID: 15864786]
[6]
Tewari, A.K.; Mishra, A. Synthesis and anti-inflammatory activities of N4,N5-disubstituted-3-methyl- H-pyrazolo[3,4-c]pyridazines. Bioorg. Med. Chem., 2001, 9(3), 715-718.
[http://dx.doi.org/10.1016/S0968-0896(00)00285-6] [PMID: 11310606]
[7]
Rovnyak, G.C.; Millonig, R.C.; Schwartz, J.; Shu, V. Synthesis and antiinflammatory activity of hexahydrothiopyrano[4,3-c]pyrazoles and related analogues. J. Med. Chem., 1982, 25(12), 1482-1488.
[http://dx.doi.org/10.1021/jm00354a018] [PMID: 6218302]
[8]
Maggio, B.; Daidone, G.; Raffa, D.; Plescia, S.; Mantione, L.; Catena Cutuli, V.M.; Mangano, N.G.; Caruso, A. Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. Eur. J. Med. Chem., 2001, 36(9), 737-742.
[http://dx.doi.org/10.1016/S0223-5234(01)01259-4] [PMID: 11672883]
[9]
Stauffer, S.R.; Katzenellenbogen, J.A. Solid-phase synthesis of tetrasubstituted pyrazoles, novel ligands for the estrogen receptor. J. Comb. Chem., 2000, 2(4), 318-329.
[http://dx.doi.org/10.1021/cc0000040] [PMID: 10891098]
[10]
Jordan, B.C.; Kumar, B.; Thilagavathi, R.; Yadhav, A.; Kumar, P.; Selvam, C. Synthesis, evaluation of cytotoxic properties of promising curcumin analogues and investigation of possible molecular mechanisms. Chem. Biol. Drug Des., 2018, 91(1), 332-337.
[http://dx.doi.org/10.1111/cbdd.13061] [PMID: 28649799]
[11]
Dube, P.N.; Bule, S.S.; Yogesh, V.; Manoj, R.U.; Pravin, K.R. Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro cytotoxic evaluation. Med. Chem. Res., 2015, 24, 1070-1076.
[http://dx.doi.org/10.1007/s00044-014-1201-z]
[12]
Shamsuzzaman, M.A.; Anis, A.; Dar, M.A.; Khanam, H.; Danishuddin, M.; Khan, A.U. Synthesis, evaluation and docking studies on steroidal pyrazolones as anticancer and antimicrobial agents. Med. Chem. Res., 2014, 23, 348-362.
[http://dx.doi.org/10.1007/s00044-013-0636-y]
[13]
Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A. Rahisuddin, Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem., 2016, 69, 77-90.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.001] [PMID: 27744115]
[14]
Daidone, G.; Maggio, B.; Plescia, S.; Raffa, D.; Musiu, C.; Milia, C.; Perra, G.; Marongiu, M.E. Antimicrobial and antineoplastic activities of new 4-diazopyrazole derivatives. Eur. J. Med. Chem., 1998, 33, 375-382.
[http://dx.doi.org/10.1016/S0223-5234(98)80004-4]
[15]
Shekarchi, M.; Hamedani, M.P.; Navidpour, L.; Adib, N.; Shafiee, A.J. Synthesis antibacterial and antifungal activities of 3-aryl-5- (pyridin-3-yl)-4,5-dihydropyrazole-1-carbothioamide derivatives. Iran Chem. Soc., 2008, 5, 150-158.
[http://dx.doi.org/10.1007/BF03245828]
[16]
Alegaon, S.G.; Hirpara, M.B.; Alagawadi, K.R.; Jalalpure, S.S.; Rasa, V.P.; Salve, P.S.; Kumbar, V.M. Synthesis and biological evaluation of 1,3,4-trisubstituted pyrazole analogues as antimycobacterial agents. Med. Chem. Res., 2017, 26, 1127-1138.
[http://dx.doi.org/10.1007/s00044-017-1821-1]
[17]
Liu, X.H.; Cui, P.; Song, B.A.; Bhadury, P.S.; Zhu, H.L.; Wang, S.F. Synthesis, structure and antibacterial activity of novel 1-(5-substituted-3-substituted-4,5-dihydropyrazol-1-yl)ethanone oxime ester derivatives. Bioorg. Med. Chem., 2008, 16(7), 4075-4082.
[http://dx.doi.org/10.1016/j.bmc.2008.01.035] [PMID: 18262793]
[18]
Akbas, E.; Berber, I. Antibacterial and antifungal activities of new pyrazolo[3,4-d]pyridazin derivatives. Eur. J. Med. Chem., 2005, 40(4), 401-405.
[http://dx.doi.org/10.1016/j.ejmech.2004.12.001] [PMID: 15804539]
[19]
Manojkumar, P.; Ravi, T.K.; Gopalakrishnan, S. Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety. Eur. J. Med. Chem., 2009, 44(11), 4690-4694.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.004] [PMID: 19646797]
[20]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano [2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[21]
Szabó, G.; Varga, B.; Páyer-Lengyel, D.; Szemzo, A.; Erdélyi, P.; Vukics, K.; Szikra, J.; Hegyi, E.; Vastag, M.; Kiss, B.; Laszy, J.; Gyertyán, I.; Fischer, J. Chemical and biological investigation of cyclopropyl containing diaryl-pyrazole-3-carboxamides as novel and potent cannabinoid type 1 receptor antagonists. J. Med. Chem., 2009, 52(14), 4329-4337.
[http://dx.doi.org/10.1021/jm900179y] [PMID: 19527048]
[22]
Pimerova, E.V.; Voronina, E.V. Antimicrobial activity of pyrazoles and pyridazines obtained by interaction of 4-aryl-3-arylhydrazono 2,4-dioxobutanoic acids and their esters with hydrazines. Pharm. Chem. J., 2001, 35, 602-604.
[23]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.063] [PMID: 22695129]
[24]
Karthikeyan, M.S.; Holla, B.S.; Kumari, N.S. Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. Eur. J. Med. Chem., 2007, 42(1), 30-36.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.011] [PMID: 17007964]
[25]
Abdel-Wahab, B.F.; Abdel-Latif, E.; Mohamed, H.A.; Awad, G.E. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur. J. Med. Chem., 2012, 52, 263-268.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.023] [PMID: 22480494]
[26]
Moore, K.W.; Bonner, K.; Jones, E.A.; Emms, F.; Leeson, P.D.; Marwood, R.; Patel, S.; Patel, S.; Rowley, M.; Thomas, S.; Carling, R.W. 4-N-linked-heterocyclic piperidine derivatives with high affinity and selectivity for human dopamine D4 receptors. Bioorg. Med. Chem. Lett., 1999, 9(9), 1285-1290.
[http://dx.doi.org/10.1016/S0960-894X(99)00169-9] [PMID: 10340615]
[27]
Cristodoulou, S.A.; Kasiotis, K.M.; Fokialakis, N.; Tillitu, I.; Haroutounian, M.S. PIFA-mediated synthesis of novel pyrazoloquinolin-4-ones as potential ligands for the estrogen receptor. Tetrahedron Lett., 2008, 49, 7100-7102.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.098]
[28]
Palaska, E.; Aytemir, M.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36(6), 539-543.
[http://dx.doi.org/10.1016/S0223-5234(01)01243-0] [PMID: 11525844]
[29]
Ouyang, G.; Cai, X.J.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J. Agric. Food Chem., 2008, 56(21), 10160-10167.
[http://dx.doi.org/10.1021/jf802489e] [PMID: 18939848]
[30]
Janus, S.L.; Magdif, A.Z.; Erik, B.P.; Claus, N. Synthesis of triazenopyrazole derivatives as potential inhibitors of HIV-1. Monatsh. Chem., 1999, 130, 1167-1174.
[http://dx.doi.org/10.1007/PL00010295]
[31]
Li, Y.; Zhang, H.Q.; Liu, J.; Yang, X.P.; Liu, Z.J. Stereoselective synthesis and antifungal activities of (E)-α-(methoxyimino)benzeneacetate derivatives containing 1,3,5-substituted pyrazole ring. J. Agric. Food Chem., 2006, 54(10), 3636-3640.
[http://dx.doi.org/10.1021/jf060074f] [PMID: 19127737]
[32]
Menozzi, G.; Schenone, P.; Mosti, L.; Mattioli, F. Synthesis of 5- substituted 1-aryl-1H-pyrazole-4-acetonitriles, 4-methyl-1-phenyl-1Hpyrazole-3-carbonitriles and pharmacologically active 1-aryl-1H-pyrazole-4- acetic acids. J. Heterocycl. Chem., 1993, 30, 997-1002.
[http://dx.doi.org/10.1002/jhet.5570300427]
[33]
Almansa, C.; Gómez, L.A.; Cavalcanti, F.L.; de Arriba, A.F.; García-Rafanell, J.; Forn, J. Synthesis and structure-activity relationship of a new series of potent AT1 selective angiotensin II receptor antagonists: 5-(biphenyl-4-ylmethyl)pyrazoles. J. Med. Chem., 1997, 40(4), 547-558.
[http://dx.doi.org/10.1021/jm9604383] [PMID: 9046346]
[34]
Sliskovic, D.R.; Roth, B.D.; Wilson, M.W.; Hoefle, M.L.; Newton, R.S. Inhibitors of cholesterol biosynthesis. 2. 1,3,5-trisubstituted [2-(tetrahydro-4-hydroxy-2-oxopyran-6-yl)ethyl]pyrazoles. J. Med. Chem., 1990, 33(1), 31-38.
[http://dx.doi.org/10.1021/jm00163a006] [PMID: 2296027]
[35]
Kees, K.L.; Fitzgerald, J.J., Jr; Steiner, K.E.; Mattes, J.F.; Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M.L. New potent antihyperglycemic agents in db/db mice: synthesis and structure-activity relationship studies of (4-substituted benzyl) (trifluoromethyl)pyrazoles and -pyrazolones. J. Med. Chem., 1996, 39(20), 3920-3928.
[http://dx.doi.org/10.1021/jm960444z] [PMID: 8831758]
[36]
Cottineau, B.; Toto, P.; Marot, C.; Pipaud, A.; Chenault, J. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids. Bioorg. Med. Chem. Lett., 2002, 12(16), 2105-2108.
[http://dx.doi.org/10.1016/S0960-894X(02)00380-3] [PMID: 12127514]
[37]
Silvestri, R.; Ligresti, A.; La Regina, G.; Piscitelli, F.; Gatti, V.; Brizzi, A.; Pasquini, S.; Lavecchia, A.; Allarà, M.; Fantini, N.; Carai, M.A.M.; Novellino, E.; Colombo, G.; Di Marzo, V.; Corelli, F. Synthesis, cannabinoid receptor affinity, molecular modeling studies and in vivo pharmacological evaluation of new substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. 2. Effect of the 3-carboxamide substituent on the affinity and selectivity profile. Bioorg. Med. Chem., 2009, 17(15), 5549-5564.
[http://dx.doi.org/10.1016/j.bmc.2009.06.027] [PMID: 19595596]
[38]
Park, H.J.; Lee, K.; Park, S.J.; Ahn, B.; Lee, J.C.; Cho, H.; Lee, K.I. Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 2005, 15(13), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.082] [PMID: 15922597]
[39]
Anzaldi, M.; Macciò, C.; Mazzei, M.; Bertolotto, M.; Ottonello, L.; Dallegri, F.; Balbi, A. Antiproliferative and proapoptotic activities of a new class of pyrazole derivatives in HL-60 cells. Chem. Biodivers., 2009, 6(10), 1674-1687.
[http://dx.doi.org/10.1002/cbdv.200800354] [PMID: 19842131]
[40]
Wiley, R.H.; Wiley, P. Pyrazolones, Pyrazolidones and Derivatives; Wiley Interscience: New York, 1964.
[http://dx.doi.org/10.1002/9780470186817]
[41]
Michon, V.; Du Penhoat, C.H.; Tombret, F.; Gillardin, J.M.; Lepagez, F.; Berthon, L. Preparation, structural analysis and anticonvulsant activity of 3- and 5-aminopyrazole N-benzoyl derivatives. Eur. J. Med. Chem., 1995, 30, 147-155.
[http://dx.doi.org/10.1016/0223-5234(96)88220-1]
[42]
Rahaman, S.A.; Prasad, Y.R.; Bhuvaneswari, K.; Kumar, P. Synthesis and antihistaminic activity of novel pyrazoline derivatives. Int. J. Chemtech Res., 2010, 2, 16-20.
[43]
Bouabdallah, I.; M’Barek, L.A.; Zyad, A.; Ramdani, A.; Zidane, I.; Melhaoui, A. Anticancer effect of three pyrazole derivatives. Nat. Prod. Res., 2006, 20(11), 1024-1030.
[http://dx.doi.org/10.1080/14786410600921441] [PMID: 17050185]
[44]
Aragade, P.; Kolhe, S.; Kamble, H.; Baheti, D.; Maddi, V. Synthesis and preliminary evaluation of some substituted pyrazoles as anticonvulsant agents. Int. J. Drug Discovery., 2012, 3, 688-693.
[45]
Dominquez, J.N.; Charris, J.E.; Caparelli, M.; Riggione, F. Synthesis and antimalarial activity of substituted pyrazole derivatives. Arzneim.-. Forsch. Drug Res., 2002, 52, 482-488.
[http://dx.doi.org/10.1055/s-0031-1299918]
[46]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem., 2009, 17(24), 8168-8173.
[http://dx.doi.org/10.1016/j.bmc.2009.10.035] [PMID: 19896853]
[47]
Chu, C.K.; Cutler, J.J. Chemistry and antiviral activities of acyclonucleosides. Heterocyclic. Chem., 1986, 23, 289-319.
[http://dx.doi.org/10.1002/jhet.5570230201]
[48]
Bailey, D.M.; Hansen, P.E.; Hlavac, A.G.; Baizman, E.R.; Pearl, J.; DeFelice, A.F.; Feigenson, M.E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J. Med. Chem., 1985, 28(2), 256-260.
[http://dx.doi.org/10.1021/jm00380a020] [PMID: 3968690]
[49]
Silver, K.S.; Soderlund, D.M. Action of pyrazoline-type insecticides at neuronal target sites. Pestic. Biochem. Physiol., 2005, 81, 136-143.
[http://dx.doi.org/10.1016/j.pestbp.2004.09.003]
[50]
Dong, W.; Xu, J.; Xıong, L.; Liu, X.; Li, Z. Synthesis, Structure and Biological Activities of Some Novel Anthranilic Acid Esters Containing N ‐Pyridylpyrazole. Chin. J. Chem., 2009, 27, 579-586.
[http://dx.doi.org/10.1002/cjoc.200990095]
[51]
Morley, A.D.; King, S.; Roberts, B.; Lever, S.; Teobald, B.; Fisher, A.; Cook, T.; Parker, B.; Wenlock, M.; Phillips, C.; Grime, K. Lead optimisation of pyrazoles as novel FPR1 antagonists. Bioorg. Med. Chem. Lett., 2012, 22(1), 532-536.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.090] [PMID: 22094028]
[52]
George, R.F.; Fouad, M.A.; Gomaa, I.E.O. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. Eur. J. Med. Chem., 2016, 112, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.048] [PMID: 26874744]
[53]
Magedov, I.V.; Manpadi, M.; Slambrouck, S.V.; Steelant, W.F.; Rozhkova, E.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Discovery and investigation of antiproliferative and apoptosis-inducing properties of new heterocyclic podophyllotoxin analogues accessible by a one-step multicomponent synthesis. J. Med. Chem., 2007, 50(21), 5183-5192.
[http://dx.doi.org/10.1021/jm070528f] [PMID: 17894480]
[54]
Kasımoğulları, R.; Bülbül, M.; Arslan, B.S.; Gökçe, B. Synthesis, characterization and antiglaucoma activity of some novel pyrazole derivatives of 5-amino-1,3,4-thiadiazole-2-sulfonamide. Eur. J. Med. Chem., 2010, 45(11), 4769-4773.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.041] [PMID: 20724038]
[55]
Verma, C.; Saji, V.S.; Quraishi, M.A.; Ebenso, E.E. Pyrazole Derivatives as environmental benign acid corrosion inhibitors for mild steel: Experimental and Computational Studies. J. Mol. Liq., 2020, 298111943
[http://dx.doi.org/10.1016/j.molliq.2019.111943]
[56]
Yadav, M.; Sinha, R.R.; Sarkar, T.K.; Tiwari, N. Corrosion inhibition effect of pyrazole derivatives on mild steel in hydrochloric acid solution. J. Adhes. Sci. Technol., 2015, 29, 1690-1713.
[http://dx.doi.org/10.1080/01694243.2015.1040979]
[57]
Elayyachy, M.; El Kodadi, M.; Hammouti, B.; Ramdani, A.; Elidrissi, A. Characterisation of a new tripyrazole derivative as inhibitor for the steel corrosion in acid solution. Pigm. Resin Technol., 2004, 33, 375-379.
[http://dx.doi.org/10.1108/03699420410568409]
[58]
El Arrouji, S.; Karrouchi, K.; Berisha, A.; Alaoui, K.I.; Warad, I.; Rais, Z.; Radi, S.; Taleb, M.; Ansar, M.; Zarrouk, A. New pyrazole derivatives as effective corrosion inhibitors on steel-electrolyte interface in 1 M HCl: Electrochemical, surface morphological (SEM) and computational analysis. Colloids Surf. A Physicochem. Eng. Asp., 2020, 604125325
[http://dx.doi.org/10.1016/j.colsurfa.2020.125325]
[59]
McCormack, P.L. Celecoxib: a review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs, 2011, 71(18), 2457-2489.
[http://dx.doi.org/10.2165/11208240-000000000-00000] [PMID: 22141388]
[60]
Penning, T.D.; Talley, J.J.; Bertenshaw, S.R.; Carter, J.S.; Collins, P.W.; Docter, S.; Graneto, M.J.; Lee, L.F.; Malecha, J.W.; Miyashiro, J.M.; Rogers, R.S.; Rogier, D.J.; Yu, S.S.; Anderson, G.D. Burton, E.G.; Cogburn, J.N.; Gregory, S.A.; Koboldt, C.M.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Zhang, Y.Y.; Isakson, P.C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem., 1997, 40(9), 1347-1365.
[http://dx.doi.org/10.1021/jm960803q] [PMID: 9135032]
[61]
Kling, J. From hypertension to angina to viagra. Mod. Drug Discovery, 1998, 1, 31-38.
[62]
Barth, F.; Rinaldi-Carmona, M. The development of cannabinoid antagonists. Curr. Med. Chem., 1999, 6(8), 745-755.
[PMID: 10469889]
[63]
Platten, M.; Fätkenheuer, G. Lersivirine - a new drug for HIV infection therapy. Expert Opin. Investig. Drugs, 2013, 22(12), 1687-1694.
[http://dx.doi.org/10.1517/13543784.2013.846325] [PMID: 24128277]
[64]
DeWald, H.A.; Lobbestael, S.; Poschel, B.P.H. Pyrazolodiazepines. 3. 4-Aryl-1,6,7,8-tetrahydro-1,3-dialkylpyrazolo[3,4-e][1,4]diazepines as antidepressant agents. J. Med. Chem., 1981, 24(8), 982-987.
[http://dx.doi.org/10.1021/jm00140a013] [PMID: 7328600]
[65]
(a)Murakami, H.; Masuzawa, S.; Takii, S.; Ito, T. Existence of a novel enzyme converting maltose into trehalose., Patent 2,012,802,003, 2003.
(b)Murakami, H.; Masuzawa, S.; Takii, S.; Ito, T. Acrylonitrile compound., Patent 2003201280 A, 2003.
[66]
Kim, M.; Sim, C.; Shin, D.; Suh, E.; Cho, K. Residual and sublethal effects of fenpyroximate and pyridaben on the instantaneous rate of increase of Tetranychus urticae. Crop Prot., 2006, 25, 542-548.
[http://dx.doi.org/10.1016/j.cropro.2005.08.010]
[67]
Marcic, D. Sublethal effects of tebufenpyrad on the eggs and immatures of two-spotted spider mite, Tetranychus urticae. Exp. Appl. Acarol., 2005, 36(3), 177-185.
[http://dx.doi.org/10.1007/s10493-005-3579-2] [PMID: 16132732]
[68]
Huang, Y.R.; Katzenellenbogen, J.A. Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: Novel ligands for the estrogen receptor. Org. Lett., 2000, 2(18), 2833-2836.
[http://dx.doi.org/10.1021/ol0062650] [PMID: 10964377]
[69]
Garcia, H.; Iborra, S.; Miranda, M.A. Pyrazoles and isoxazoles derived from 2-hydroxyaryl phenylethynyl ketones: Synthesis and spectrophotometric evaluation of their potential applicability as sunscreens. Heterocycles, 1991, 32, 1745-1755.
[http://dx.doi.org/10.3987/COM-91-5773]
[70]
Deng, X.; Mani, N.S. Regioselective synthesis of 1,3,5-tri- and 1,3,4,5-tetrasubstituted pyrazoles from N-arylhydrazones and nitroolefins. J. Org. Chem., 2008, 73(6), 2412-2415.
[http://dx.doi.org/10.1021/jo7026195] [PMID: 18278943]
[71]
Despotopoulou, C.; Klier, L.; Knochel, P. Synthesis of fully substituted pyrazoles via regio- and chemoselective metalations. Org. Lett., 2009, 11(15), 3326-3329.
[http://dx.doi.org/10.1021/ol901208d] [PMID: 19580307]
[72]
Sorabad, G.S.; Maddani, M.R. Metal free, facile sulfenylation of ketene dithioacetals catalyzed by an HBr–DMSO system. New J. Chem., 2019, 43, 5996-6000.
[http://dx.doi.org/10.1039/C9NJ00925F]
[73]
Stasevych, M. V.; Zvarych, V. I.; Lunin, V. V.; Khomyak, S. V.; Vovk, M. V.; Novikov, V. P. Synthesis of pyrazole and tetrazole derivatives of 9,10-anthraquinonylhydrazones. Chem. Heterocycl. Compd. (N Y,)., 2017, 53, 927-929.
[74]
Sanam, B.K.; al-Rashida, M.; Alharthy, R.D.; Moin, S.T.; Hameed, A. Morpholinium and piperidinium based deep eutectic solvents for synthesis of pyrazole-5-carbonitriles, indoles and tetrazoles: bulk properties via molecular dynamics simulations. ChemistrySelect, 2018, 3, 12907-12917.
[http://dx.doi.org/10.1002/slct.201803265]
[75]
Lellek, V. Chen, C-yi.; Yang, W.; Liu, J.; Ji, X.; Faessler, R. An efficient synthesis of substituted pyrazoles from one-pot reaction of ketones, aldehydes, and hydrazine monohydrochloride. Synlett, 2018, 29, 1071-1075.
[http://dx.doi.org/10.1055/s-0036-1591941]
[76]
Rather, R.A.; Khan, M.U.; Siddiqui, Z.N. Sulphated alumina tungstic acid (SATA): A highly efficient and novel heterogeneous mesostructured catalyst for the synthesis of pyrazole carbonitrile derivatives and evaluation of green metrics. RSC Advances, 2020, 10, 818-827.
[http://dx.doi.org/10.1039/C9RA09013D]
[77]
Sarkar, D.; Sahoo, S.R. Monohydrochloride assisted synthesis of functionalised isoxazoles and pyrazoles from allenic ketones – first synthesis of (Z)-2-methyl - 7H benzo[b]pyrazolo[5,1-d][1,5]oxazocines. Eur. J. Org. Chem., 2019, 2019, 2035-2049.
[http://dx.doi.org/10.1002/ejoc.201900008]
[78]
Arora, P.; Rajput, J.K. One-pot multicomponent click synthesis of pyrazole derivatives using cyclodextrin-supported capsaicin nanoparticles as catalyst. J. Mater. Sci., 2017, 52, 11413-11427.
[http://dx.doi.org/10.1007/s10853-017-1304-2]
[79]
Konwar, M.; Elnagdy, H.M.F.; Gehlot, P.S.; Khupse, N.D.; Kumar, A.; Sarma, D. Transition metal containing ionic liquid-assisted one-pot synthesis of pyrazoles at room temperature. J. Chem. Sci., 2019, 131, 1-9.
[http://dx.doi.org/10.1007/s12039-019-1659-9]
[80]
Konwar, M.; Phukan, P.; Chaliha, A.K.; Buragohain, A.K.; Damarla, K.; Gogoi, D.; Kumar, A.; Sarma, D. An Unexplored lewis acidic catalytic system for synthesis of pyrazole and its biaryls derivatives with antimicrobial activities through cycloaddition-iodination-suzuki reaction. ChemistrySelect, 2019, 4, 10236-10245.
[http://dx.doi.org/10.1002/slct.201902266]
[81]
Toche, R.B.; Patil, V.M. Chaudhari (Patil), S. A.; Chavan, S. M.; Sabnis, R. W. Green synthesis of pyrazole and oxazole derivatives. J. Heterocycl. Chem., 2018, 56, 38-43.
[http://dx.doi.org/10.1002/jhet.3360]
[82]
Sagir, H.; Rai, P.; Ibad, A.; Ibad, F.; Siddiqui, I.R. Visible-light-photoredox catalytic C-C, C-N bond formation: synthesis of pyrazole derivatives via radical ions. Catal. Commun., 2017, 100, 153-156.
[http://dx.doi.org/10.1016/j.catcom.2017.06.051]
[83]
Kakhki, R.M.; Karimian, A. Hasan nejad, H.; Ahsani, F. Zinc Oxide–nanoclinoptilolite as a superior catalyst for visible photooxidation of dyes and green synthesis of pyrazole derivatives. J. Inorg. Organomet. Polym., 2019, 29, 1358-1367.
[http://dx.doi.org/10.1007/s10904-019-01100-8]
[84]
Abu-Zaied, M.A.; Elgemeie, G.H. Novel synthesis of new pyrazole thioglycosides as pyrazomycin analogues. Nucleosides Nucleotides Nucleic Acids, 2019, 38(5), 374-389.
[http://dx.doi.org/10.1080/15257770.2018.1554220] [PMID: 30689496]
[85]
Kumari, P.; Sood, S.; Kumar, A.; Singh, K. Microwave‐assisted Vilsmeier‐Haack synthesis of Pyrazole‐ 4‐carbaldehydes. J. Heterocycl. Chem., 2019, 57, 796-804.
[http://dx.doi.org/10.1002/jhet.3824]
[86]
Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.007] [PMID: 29353728]
[87]
Reddy, V.N.; Yamini, L.; Rao, Y.J.; Rao, C.P. Synthesis of pyrazole-4-carbaldehyde derivatives for their antifungal activity. Med. Chem. Res., 2017, 26, 1664-1674.
[http://dx.doi.org/10.1007/s00044-017-1883-0]
[88]
de Rosa, G.S.; Souto, B.A.; Pereira, C.N.; Teixeira, B.C.; Santos, M.S. dos A convenient synthesis of pyrazole-imidazoline derivatives by microwave irradiation. J. Heterocycl. Chem., 2019, 56, 1825-1830.
[http://dx.doi.org/10.1002/jhet.3557]
[89]
Murahari, M.; Mahajan, V.; Neeladri, S.; Kumar, M.S.; Mayur, Y.C. Ligand based design and synthesis of pyrazole based derivatives as selective COX-2 inhibitors. Bioorg. Chem., 2019, 86, 583-597.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.031] [PMID: 30782576]
[90]
Sarmah, B.; Srivastava, R. Octahedral MnO2 molecular sieve decorated Meso-ZSM-5 catalyst for eco-friendly synthesis of pyrazoles and carbamates. Ind. Eng. Chem. Res., 2017, 56, 15017-15029.
[http://dx.doi.org/10.1021/acs.iecr.7b03993]
[91]
Mohareb, R.M.; Gamaan, M.S. The uses of ethyl 2-(1H-benzo[d]imidazole-2-yl)acetate tosynthesis pyrazole, thiophene, pyridine and coumarin derivatives with antitumor activities. Bull. Chem. Soc. Ethiop., 2018, 32, 541-557.
[http://dx.doi.org/10.4314/bcse.v32i3.13]
[92]
Jaiswal, D.; Tiwari, J.; Singh, S.; Sharma, A.K.; Singh, J.; Singh, J. Sarcosine as a novel and recyclable organocatalyst: A greener approach towards the synthesis of multisubstituted pyrazole derivatives. Curr. Organocatal., 2018, 5, 229-238.
[http://dx.doi.org/10.2174/2213337205666180810123412]
[93]
Zhang, Q.; Tang, M. Regioselective synthesis of highly functionalized pyrazoles from n-tosylhydrazones. Org. Lett., 2019, 21(6), 1917-1920.
[http://dx.doi.org/10.1021/acs.orglett.9b00561] [PMID: 30829036]
[94]
Hajlaoui, K.; Guesmi, A.E.; Hamadi, N.B.; Msaddek, M. Synthesis of novel pyrazole–sucrose derivatives by 1,3-dipolar cycloaddition. J. Heterocycl. Chem., 2018, 55, 2069-2074.
[http://dx.doi.org/10.1002/jhet.3246]
[95]
Muthusamy, S.; Gangadurai, C. “On water” cascade synthesis of benzopyranopyrazoles and their macrocycles. Tetrahedron Lett., 2018, 59, 1501-1505.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.013]
[96]
Khairnar, P.V.; Lung, T-H.; Lin, Y.J.; Wu, C.Y.; Koppolu, S.R.; Edukondalu, A.; Karanam, P.; Lin, W. An intramolecular wittig approach toward heteroarenes: Synthesis of pyrazoles, isoxazoles, and chromenone-oximes. Org. Lett., 2019, 21(11), 4219-4223.
[http://dx.doi.org/10.1021/acs.orglett.9b01395] [PMID: 31117709]
[97]
Yadav, V.B.; Rai, P.; Sagir, H.; Kumar, A.; Siddiqui, I.R. Catalyst-free synthesis for pyrazole-fused isocoumarins in recyclable and biodegradable reaction medium. ChemistrySelect, 2017, 2, 8320-8325.
[http://dx.doi.org/10.1002/slct.201700976]
[98]
Cheng, J.; Li, W.; Duan, Y.; Cheng, Y.; Yu, S.; Zhu, C. Relay Visible-Light Photoredox catalysis: Synthesis of pyrazole derivatives via formal [4 + 1] annulation and aromatization. Org. Lett., 2017, 19(1), 214-217.
[http://dx.doi.org/10.1021/acs.orglett.6b03497] [PMID: 27996274]
[99]
Raj, J.P.; Gangaprasad, D.; Karthikeyan, K.; Rengasamy, R.; Kesavan, M.; Venkateswarulu, M.; Vajjiravel, M.; Elangovan, J. A new route to synthesis of substituted pyrazoles through oxidative [3+2] cycloaddition of electron deficient alkenes and diazocarbonyl compounds. Tetrahedron Lett., 2018, 59, 4462-4465.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.007]
[100]
Remy, R.; Bochet, C.G. Application of photoclick chemistry for the synthesis of pyrazoles via 1,3-dipolar cycloaddition between alkynes and nitrilimines generated in situ. Eur. J. Org. Chem., 2018, 2018, 316-328.
[http://dx.doi.org/10.1002/ejoc.201701225]
[101]
Soltanzadeh, Z.; Imanzadeh, G.; Pesyan, N.N.; Şahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10, 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[102]
Fu, Y.; Wang, M-X.; Zhang, D.; Hou, Yu-W.; Gao, S. Zhao, Li-X.; Ye, F. Design, synthesis, and herbicidal activity of pyrazole benzophenone derivatives. RSC Advances, 2017, 7, 46858-46865.
[http://dx.doi.org/10.1039/C7RA09858H]
[103]
[[1]]Kotouge, R.; Nishiyama, T.; Yamauchi, A.; Ono, K.; Hatae, N.; Oikawa, T.; Hibino, S.; Choshi, T. Synthesis of 4-aroyl-5-arylpyrazoles and 4-aroyl-3-arylpyrazoles via the reaction of enaminodiketones with substituted hydrazines. Heterocycles, 2020, 100, 25-45.
[http://dx.doi.org/10.3987/COM-19-14096]
[104]
Aqlan, F.M.; Alam, M.M.; Saleha, T.S.; Asirie, A.M.; Udding, J.; Rahman, M.M. Synthesis of novel. pyrazole incorporating coumarin moiety (PC) for the selective and sensitive Co2+ detection. New J. Chem., 2019, 43, 12331-12339.
[http://dx.doi.org/10.1039/C9NJ02176K]
[105]
Madhu, G.; Sudhakar, M.; Kumar, K.S.; Reddy, G.R.; Sravani, A.; Ramakrishna, K.C.; Rao, P. Synthesis of pyrazole-substituted chromene analogues with selective anti-leukemic activity. Russ. J. Gen. Chem., 2017, 87, 2421-2428.
[http://dx.doi.org/10.1134/S1070363217100243]
[106]
Das, P.; Gondo, S.; Tokunaga, E.; Sumii, Y.; Shibata, N. Anionic triflyldiazomethane: Generation and its application for synthesis of pyrazole-3-triflones via [3 + 2] cycloaddition reaction. Org. Lett., 2018, 20(3), 558-561.
[http://dx.doi.org/10.1021/acs.orglett.7b03664] [PMID: 29320193]
[107]
Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen., 2018, 21(3), 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy