Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Applications of the Dess-Martin Oxidation in Total Synthesis of Natural Products

Author(s): Majid M. Heravi*, Tayebe Momeni, Vahideh Zadsirjan* and Leila Mohammadi

Volume 18, Issue 2, 2021

Published on: 17 September, 2020

Page: [125 - 196] Pages: 72

DOI: 10.2174/1570179417666200917102634

Price: $65

Abstract

Dess–Martin periodinane (DMP), a commercially available chemical, is frequently utilized as a mild oxidative agent for the selective oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. DMP shows several merits over other common oxidative agents such as chromiumand DMSO-based oxidants; thus, it is habitually employed in the total synthesis of natural products. In this review, we try to underscore the applications of DMP as an effective oxidant in an appropriate step (steps) in the multi-step total synthesis of natural products.

Keywords: Dess-Martin periodinane, DMP, oxidation, total synthesis, natural products, oxidation, alcohols, aldehydes, ketones.

Graphical Abstract

[1]
Jerry, M. Advanced organic chemistry: Reactions, mechanisms and structure; Wiley: New York, 1992.
[2]
Pourret, O. On the necessity of banning the term “heavy metal” from the scientific literature. Sustainability, 2018, 10(8), 2879.
[http://dx.doi.org/10.3390/su10082879]
[3]
Varvoglis, A. Chemical transformations induced by hypervalent iodine reagents. Tetrahedron, 1997, 53(4), 1179-1255.
[http://dx.doi.org/10.1016/S0040-4020(96)00970-2]
[4]
Stang, P.J.; Zhdankin, V.V. Organic polyvalent iodine compounds. Chem. Rev., 1996, 96(3), 1123-1178.
[http://dx.doi.org/10.1021/cr940424+] [PMID: 11848783]
[5]
Varvoglis, A.; Spyroudis, S. Hypervalent iodine chemistry: 25 years of development at the University of Thessaloniki. Synlett, 1998, 9(03), 221-232.
[http://dx.doi.org/10.1055/s-1998-1619]
[6]
Varvoglis, A. Hypervalent iodine in organic synthesis; Academic Press, 1996.
[7]
Kirschning, A. Hypervalent iodine and carbohydrates–a new liaison. Eur. J. Org. Chem., 1998, 1998(11), 2267-2274.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199811)1998:11<2267:AID-EJOC2267>3.0.CO;2-E]
[8]
Kitamura, T.; Fujiwara, Y. Recent progress in the use of hypervalent iodine reagents in organic synthesis a review. Org. Prep. Proced. Int., 1997, 29(4), 409-458.
[9]
Wirth, T.; Hirt, U.H. Hypervalent iodine compounds: Recent advances in synthetic applications. Synthesis, 1999, 1999(08), 1271-1287.
[http://dx.doi.org/10.1055/s-1999-3540]
[10]
Moriarty, R.M.; Prakash, O. Synthesis of heterocyclic compounds using organohypervalent iodine reagents. Adv. Heterocycl. Chem., 1998, 69, 2-89.
[11]
Akiba, K-y. Chemistry of hypervalent compounds; John Wiley & Sons, 1998.
[12]
Chaudhari, S.S. 2-Iodoxybenzoic Acid (IBX) and Dess-Martin Periodinane (DMP). Synlett, 2000, 2000(02), 278.
[http://dx.doi.org/10.1055/s-2000-6505]
[13]
Wirth, T. IBX–neue Reaktionen mit einem alten Reagens. Angew. Chem., 2001, 113(15), 2893-2895.
[http://dx.doi.org/10.1002/1521-3757(20010803)113:15<2893:AID-ANGE2893>3.0.CO;2-F]
[14]
Zhdankin, V.V.; Stang, P.J. Recent developments in the chemistry of polyvalent iodine compounds. Chem. Rev., 2002, 102(7), 2523-2584.
[http://dx.doi.org/10.1021/cr010003+] [PMID: 12105935]
[15]
Togo, H.; Sakuratani, K. Polymer-supported hypervalent iodine reagents. Synlett, 2002, 2002(12), 1966-1975.
[http://dx.doi.org/10.1055/s-2002-35575]
[16]
Amey, R.L. An alkoxyaryltrifluoroperiodinane. A stable heterocyclic derivative of pentacoordinated organoiodine (V). J. Am. Chem. Soc., 1978, 100(1), 300-301.
[http://dx.doi.org/10.1021/ja00469a060]
[17]
Dess, D.; Martin, J. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem., 1983, 48(22), 4155-4156.
[http://dx.doi.org/10.1021/jo00170a070]
[18]
Ireland, R.E.; Liu, L. An improved procedure for the preparation of the Dess-Martin periodinane. J. Org. Chem., 1993, 58(10), 2899-2899.
[http://dx.doi.org/10.1021/jo00062a040]
[19]
Kita, Y.; Takada, T.; Tohma, H. Hypervalent iodine reagents in organic synthesis: Nucleophilic substitution of p-substituted phenol ethers Pur. Appl. Chem., 1996, 68(3), 627-630.
[20]
Kita, Y.; Egi, M.; Takada, T.; Tohma, H. Development of novel reactions using hypervalent iodine (III) reagents: Total synthesis of sulfur-containing pyrroloiminoquinone marine product,(±)-makaluvamine F. Synthesis, 1999, 1999(05), 885-897.
[http://dx.doi.org/10.1055/s-1999-3462]
[21]
Tohma, H.; Kita, Y. Synthetic applications (total synthesis and natural product synthesis).Hypervalent Iodine Chemistry; Springer, 2003, pp. 209-248.
[http://dx.doi.org/10.1007/3-540-46114-0_8]
[22]
Wasserman, H.H.; Parr, J. The chemistry of vicinal tricarbonyls and related systems. Acc. Chem. Res., 2004, 37(9), 687-701.
[http://dx.doi.org/10.1021/ar0300221] [PMID: 15379584]
[23]
Lawrence, N.J.; Crump, J.P.; McGown, A.T.; Hadfield, J.A. Reaction of Baylis–Hillman products with Swern and Dess–Martin oxidants. Tetrahedron Lett., 2001, 42(23), 3939-3941.
[http://dx.doi.org/10.1016/S0040-4039(01)00587-1]
[24]
Chaudhari, S.S.; Akamanchi, K.G. A mild, chemoselective, oxidative method for deoximation using Dess-Martin periodinane. Synthesis, 1999, 1999(05), 760-764.
[http://dx.doi.org/10.1055/s-1999-3476]
[25]
Jenkins, N.E.; Ware, R.W., Jr; Atkinson, R.N.; King, S.B. Generation of acyl nitroso compounds by the oxidation of n-acyl hydroxylamines with the dessmartin periodinane. Synth. Commun., 2000, 30(5), 947-953.
[http://dx.doi.org/10.1080/00397910008087108]
[26]
Nicolaou, K.; Sugita, K.; Baran, P.S.; Zhong, Y.L. New synthetic technology for the construction of n‐containing quinones and derivatives thereof: total synthesis of epoxyquinomycin B. Angew. Chem. Int. Ed., 2001, 40(1), 207-210.
[http://dx.doi.org/10.1002/1521-3773(20010105)40:1<207:AID-ANIE207>3.0.CO;2-K]
[27]
Nicolaou, K.C.; Montagnon, T.; Baran, P.S.; Zhong, Y-L. Iodine(V) reagents in organic synthesis. Part 4. o-Iodoxybenzoic acid as a chemospecific tool for single electron transfer-based oxidation processes. J. Am. Chem. Soc., 2002, 124(10), 2245-2258.
[http://dx.doi.org/10.1021/ja012127+] [PMID: 11878978]
[28]
Plumb, J.; Harper, D. 2‐ Iodoxybenzoic Acid. ChemInform, 1990, 21(51), 304.
[29]
Dess, D.B.; Martin, J. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc., 1991, 113(19), 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[30]
Meyer, S.D.; Schreiber, S.L. Acceleration of the Dess-Martin oxidation by water. J. Org. Chem., 1994, 59(24), 7549-7552.
[http://dx.doi.org/10.1021/jo00103a067]
[31]
Santella, T.M.; Triggle, D. Body Enhancement Products; Infobase Publishing, 2009.
[32]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[33]
Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery Curr. Opin. Chem. Bio., 2019, 52, 1-8.
[http://dx.doi.org/10.1016/j.cbpa.2018.12.007]
[34]
Liang, X.; Luo, D.; Luesch, H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol. Res., 2019.147104373
[http://dx.doi.org/10.1016/j.phrs.2019.104373] [PMID: 31351913]
[35]
Popp, M. W.; Antos, J. M.; Grotenbreg, G. M.; Spooner, E.; Ploegh, H. L. Sortagging: a versatile method for protein labeling Nat. chem. bio., 2007, 3(11), 707-708.
[http://dx.doi.org/10.1038/nchembio.2007.31]
[36]
Samuelson, G.; Bohlin, L. Drugs of Natural origin. A texboot of Pharmacognosy; Swedish Pharmaceutical Pres: Stockholm, 1992.
[37]
Heravi, M.M.; Hashemi, E.; Nazari, N. Negishi coupling: an easy progress for C-C bond construction in total synthesis. Mol. Divers., 2014, 18(2), 441-472.
[http://dx.doi.org/10.1007/s11030-014-9510-1] [PMID: 24604702]
[38]
Heravi, M.M.; Hashemi, E.; Azimian, F. Recent developments of the Stille reaction as a revolutionized method in total synthesis. Tetrahedron, 2014, 1(70), 7-21.
[http://dx.doi.org/10.1016/j.tet.2013.07.108]
[39]
Heravi, M.M.; Hashemi, E.; Ghobadi, N. Development of recent total syntheses based on the Heck reaction. Curr. Org. Chem., 2013, 17(19), 2192-2224.
[http://dx.doi.org/10.2174/13852728113179990032]
[40]
Heravi, M.M.; Hashemi, E. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron, 2012, 68(45), 9145-9178.
[http://dx.doi.org/10.1016/j.tet.2012.08.058]
[41]
Heravi, M.M.; Bakhtiari, A.; Faghihi, Z. Applications of Barton-McCombie reaction in total syntheses. Curr. Org. Synth., 2014, 11(6), 787-823.
[http://dx.doi.org/10.2174/157017941106141023113539]
[42]
Heravi, M.M.; Asadi, S.; Lashkariani, B.M. Recent progress in asymmetric Biginelli reaction. Mol. Divers., 2013, 17(2), 389-407.
[http://dx.doi.org/10.1007/s11030-013-9439-9] [PMID: 23588897]
[43]
Heravi, M.M.; Zadsirjan, V. Oxazolidinones as chiral auxiliaries in asymmetric aldol reactions applied to total synthesis. Tetrahedron Asymmetry, 2013, 24(19), 1149-1188.
[http://dx.doi.org/10.1016/j.tetasy.2013.08.011]
[44]
Heravi, M.; Vavsari, V. Recent applications of intramolecular Diels–Alder reaction in total synthesis of natural products RSC Adv., 2015, 5, 50890-50912.
[http://dx.doi.org/10.1039/C5RA08306K]
[45]
Heravi, M.M.; Lashaki, T.B.; Poorahmad, N. Applications of Sharpless asymmetric epoxidation in total synthesis. Tetrahedron Asymmetry, 2015, 26(8-9), 405-495.
[http://dx.doi.org/10.1016/j.tetasy.2015.03.006]
[46]
Heravi, M.M.; Zadsirjan, V.; Bozorgpour Savadjani, Z. Applications of Mannich reaction in total syntheses of natural products. Curr. Org. Chem., 2014, 18(22), 2857-2891.
[http://dx.doi.org/10.2174/1385272819666141014212254]
[47]
Heravi, M.M.; Nazari, N. Bischler-Napieralski reaction in total synthesis of isoquinoline-based natural products. An old reaction, a new application. Curr. Org. Chem., 2015, 19(24), 2358-2408.
[http://dx.doi.org/10.2174/1385272819666150730214506]
[48]
Heravi, M. M.; Lashaki, T. B.; Fattahi, B.; Zadsirjan, V. Application of asymmetric Sharpless aminohydroxylation in total synthesis of natural products and some synthetic complex bio-active molecules RSC adv, 2018, 8(12), 6634-6659.
[http://dx.doi.org/10.1039/C7RA12625E]
[49]
Daloze, D.; Braekman, J-C.; Pasteels, J.M. Ladybird defence alkaloids: structural, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae). Chemoecology, 1994, 5(3-4), 173-183.
[http://dx.doi.org/10.1007/BF01240602]
[50]
Happ, G.M.; Eisner, T. Hemorrhage in a coccinellid beetle and its repellent effect on ants. Science, 1961, 134(3475), 329-331.
[http://dx.doi.org/10.1126/science.134.3475.329] [PMID: 17819303]
[51]
Glisan King, A.; Meinwald, J. Review of the defensive chemistry of coccinellids. Chem. Rev., 1996, 96(3), 1105-1122.
[http://dx.doi.org/10.1021/cr950242v] [PMID: 11848782]
[52]
Tursch, B.; Daloze, D.; Dupont, M.; Pasteels, J.; Tricot, M-C. defense alkaloid in a carnivorus beetle. Experientia, 1971.
[http://dx.doi.org/10.1007/BF02154239]
[53]
Alujas-Burgos, S.; Oliveras-González, C.; Álvarez-Larena, Á.; Bayón, P.; Figueredo, M. Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of (-)-9a epi-Hippocasine. J. Org. Chem., 2018, 83(9), 5052-5057.
[http://dx.doi.org/10.1021/acs.joc.8b00390] [PMID: 29644844]
[54]
Carroll, A.R.; Hyde, E.; Smith, J.; Quinn, R.J.; Guymer, G.; Forster, P.I. Actinophyllic acid, a potent indole alkaloid inhibitor of the coupled enzyme assay carboxypeptidase u/hippuricase from the leaves of Alstonia actinophylla (Apocynaceae). J. Org. Chem., 2005, 70(3), 1096-1099.
[http://dx.doi.org/10.1021/jo048439n] [PMID: 15675882]
[55]
Corey, E.J.; Li, W.; Nagamitsu, T. An efficient and concise enantioselective total synthesis of lactacystin. Angew. Chem. Int. Ed. Engl., 1998, 37(12), 1676-1679.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1676:AID-ANIE1676>3.0.CO;2-T] [PMID: 29711503]
[56]
Feng, T.; Li, Y.; Liu, Y-P.; Cai, X-H.; Wang, Y-Y.; Luo, X-D. Melotenine A, a cytotoxic monoterpenoid indole alkaloid from Melodinus tenuicaudatus. Org. Lett., 2010, 12(5), 968-971.
[http://dx.doi.org/10.1021/ol1000022] [PMID: 20112938]
[57]
Zhao, S.; Sirasani, G.; Vaddypally, S.; Zdilla, M.J.; Andrade, R.B. Asymmetric total synthesis of (−)-melotenine A. Tetrahedron, 2016, 72(40), 6107-6112.
[http://dx.doi.org/10.1016/j.tet.2016.07.059]
[58]
Liang, K.; Deng, X.; Tong, X.; Li, D.; Ding, M.; Zhou, A.; Xia, C. Copper-mediated dimerization to access 3a,3a′-bispyrrolidinoindoline: diastereoselective synthesis of (+)-WIN 64821 and (-)-ditryptophenaline. Org. Lett., 2015, 17(2), 206-209.
[http://dx.doi.org/10.1021/ol5032365] [PMID: 25565384]
[59]
Ghosh, S.; Chaudhuri, S.; Bisai, A. Oxidative dimerization of 2-oxindoles promoted by KO(t)Bu-I2: total synthesis of (±)-folicanthine. Org. Lett., 2015, 17(6), 1373-1376.
[http://dx.doi.org/10.1021/acs.orglett.5b00032] [PMID: 25745809]
[60]
De, S.; Das, M.K.; Roy, A.; Bisai, A. Synthesis of 2-Oxindoles Sharing Vicinal All-Carbon Quaternary Stereocenters via Organocatalytic Aldol Reaction. J. Org. Chem., 2016, 81(24), 12258-12274.
[http://dx.doi.org/10.1021/acs.joc.6b02195] [PMID: 27978733]
[61]
Wang, F-P.; Chen, Q-H.; Liu, X-Y. Diterpenoid alkaloids. Nat. Prod. Rep., 2010, 27(4), 529-570.
[http://dx.doi.org/10.1039/b916679c] [PMID: 20336236]
[62]
Wang, F-P.; Chen, Q-H. The C19-diterpenoid alkaloids. Alkaloids Chem. Biol., 2010, 69, 1-577. xi.
[http://dx.doi.org/10.1016/S1099-4831(10)69001-3] [PMID: 20649001]
[63]
Wang, F-P.; Peng, C-S.; Yu, K-B. Racemulosine, a novel skeletal C20-diterpenoid alkaloid from Aconitum racemulosum Franch var. pengzhouense. Tetrahedron, 2000, 56(38), 7443-7446.
[http://dx.doi.org/10.1016/S0040-4020(00)00676-1]
[64]
Jiang, M-L.; Meng, Y-J.; Xiong, W-Y.; Xu, L. Construction of functionalized ABEF ring system of C20-diterpenoid alkaloid racemulosine. Tetrahedron Lett., 2016, 57(14), 1610-1612.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.110]
[65]
Matveenko, M.; Kokas, O.J.; Banwell, M.G.; Willis, A.C. Chemoenzymatic approaches to lycorine-type Amaryllidaceae alkaloids: total syntheses of ent-lycoricidine, 3-epi-ent-lycoricidine, and 4-deoxy-3-epi-ent-lycoricidine. Org. Lett., 2007, 9(18), 3683-3685.
[http://dx.doi.org/10.1021/ol701552r] [PMID: 17685535]
[66]
Jin, Z. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep., 2003, 20(6), 606-614.
[http://dx.doi.org/10.1039/b304144c] [PMID: 14700202]
[67]
Jimenez, A.; Santos, A.; Alonso, G.; Vazquez, D. Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids. Biochim. Biophys. Acta, 1976, 425(3), 342-348.
[http://dx.doi.org/10.1016/0005-2787(76)90261-6] [PMID: 944052]
[68]
Gabrielsen, B.; Monath, T.P.; Huggins, J.W.; Kefauver, D.F.; Pettit, G.R.; Groszek, G.; Hollingshead, M.; Kirsi, J.J.; Shannon, W.M.; Schubert, E.M. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J. Nat. Prod., 1992, 55(11), 1569-1581.
[http://dx.doi.org/10.1021/np50089a003] [PMID: 1336040]
[69]
Ghosal, S.; Singh, S.; Kumar, Y.; Srivastava, R.S. Isocarbostyril alkaloids from Haemanthus kalbreyeri. Phytochemistry, 1989, 28(2), 611-613.
[http://dx.doi.org/10.1016/0031-9422(89)80061-5]
[70]
Ghosal, S.; Lochan, R. Ashutosh; K. Y.; Srivastava, R.S. Alkaloids of Haemanthus kalbreyeri. Phytochemistry, 1985, 24, 1825.
[http://dx.doi.org/10.1016/S0031-9422(00)82560-1]
[71]
Evidente, A.; Arrigoni, O.; Liso, R.; Calabrese, G.; Randazzo, G. Further experiments on structure-activity relationships among the lycorine alkaloids. Phytochemistry, 1986, 25(12), 2739-2743.
[http://dx.doi.org/10.1016/S0031-9422(00)83732-2]
[72]
Rigby, J.H. Vinyl isocyanates as useful building blocks for alkaloid synthesis. Synlett, 2000, 2000(01), 1-12.
[http://dx.doi.org/10.1055/s-2000-6430]
[73]
Bera, S.; Das, S.K.; Saha, T.; Panda, G. Total synthesis of 3-epi-(+)-lycoricidine from Garner aldehyde via intramolecular aldol cyclization. Tetrahedron Lett., 2015, 56(1), 146-149.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.045]
[74]
Zheng, H.; Dong, Z.; She, J. Jingjie. Modern study of traditional Chinese medicine; Beijing Xue Yuan: Beijing, China, 1997, pp. 3072-3081.
[75]
Shi, X.; Ni, H.; Liu, Y. Research review on chemical constituent and pharmacological action of Radix Isatidis. Zhongguo Yiyuan Yaoxue Zazhi, 2006, 26(11), 1397-1399.
[76]
Liu, J-F.; Jiang, Z-Y.; Wang, R-R.; Zheng, Y-T.; Chen, J-J.; Zhang, X-M.; Ma, Y-B. Isatisine A, a novel alkaloid with an unprecedented skeleton from leaves of Isatis indigotica. Org. Lett., 2007, 9(21), 4127-4129.
[http://dx.doi.org/10.1021/ol701540y] [PMID: 17850153]
[77]
Xiao, M.; Wu, W.; Wei, L.; Jin, X.; Yao, X.; Xie, Z. Total synthesis of (−)-isatisine A via a biomimetic benzilic acid rearrangement. Tetrahedron, 2015, 71(22), 3705-3714.
[http://dx.doi.org/10.1016/j.tet.2014.09.028]
[78]
Lin, W.-H. X. R.-S.; Qiong-Xin, Z. Chemical Studies on Stemona Alkaloids II. ϩ. Studies on the Minor Alkaloids of Stemona parviflora Wright CH Acta. Chim. Sin., 1991, 17(10)
[79]
Baird, M.C.; Pyne, S.G.; Ung, A.T.; Lie, W.; Sastraruji, T.; Jatisatienr, A.; Jatisatienr, C.; Dheeranupattana, S.; Lowlam, J.; Boonchalermkit, S. Semisynthesis and biological activity of stemofoline alkaloids. J. Nat. Prod., 2009, 72(4), 679-684.
[http://dx.doi.org/10.1021/np800806b] [PMID: 19222234]
[80]
Huang, P-Q.; Huang, S-Y.; Gao, L-H.; Mao, Z-Y.; Chang, Z.; Wang, A-E. Enantioselective total synthesis of (+)-methoxystemofoline and (+)-isomethoxystemofoline. Chem. Commun. (Camb.), 2015, 51(22), 4576-4578.
[http://dx.doi.org/10.1039/C4CC09598G] [PMID: 25607771]
[81]
Daly, J.W.; Spande, T.F.; Garraffo, H.M. Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. J. Nat. Prod., 2005, 68(10), 1556-1575.
[http://dx.doi.org/10.1021/np0580560] [PMID: 16252926]
[82]
Daly, J.W.; Gusovsky, F.; McNeal, E.T.; Secunda, S.; Bell, M.; Creveling, C.R.; Nishizawa, Y.; Overman, L.E.; Sharp, M.J.; Rossignol, D.P. Pumiliotoxin alkaloids: a new class of sodium channel agents. Biochem. Pharmacol., 1990, 40(2), 315-326.
[http://dx.doi.org/10.1016/0006-2952(90)90694-G] [PMID: 2165404]
[83]
Zhang, J.; Zhang, H-K.; Huang, P-Q. Towards stereochemical control: A short formal enantioselective total synthesis of pumiliotoxins 251D and 237A. Beilstein J. Org. Chem., 2013, 9(1), 2358-2366.
[http://dx.doi.org/10.3762/bjoc.9.271] [PMID: 24367400]
[84]
Khuong-Huu, F.; Cesario, M.; Guilhem, J.; Goutarel, R. Alcaloïdes indoliques—CII: Deux nouveaux types d’alcaloïdes indoliques l’ibophyllidine, dérivé du nor-21 (+) pandolane et l’iboxyphylline dérivé de l’abeo-21 (20→ 19)(+) pandolane, retirés des feuilles de tabernanthe iboga baillon et de t. subsessilis stapf. Tetrahedron, 1976, 32(21), 2539-2543.
[http://dx.doi.org/10.1016/0040-4020(76)88023-4]
[85]
Andrews, I.P.; Kwon, O. Enantioselective total synthesis of (+)-ibophyllidine via an asymmetric phosphine-catalyzed [3 + 2] annulation. Chem. Sci. (Camb.), 2012, 3(8), 2510-2514.
[http://dx.doi.org/10.1039/c2sc20468a] [PMID: 22798981]
[86]
Catena, J.; Valls, N.; Bosch, J.; Bonjoch, J. The Pummerer cyclization route to the ibophyllidine alkaloids. Total synthesis of (±)-deethylibophyllidine. Tetrahedron Lett., 1994, 35(25), 4433-4436.
[http://dx.doi.org/10.1016/S0040-4039(00)73377-6]
[87]
Toyooka, N.; Kawasaki, M.; Nemoto, H. Enantioselective synthesis of poison-frog alkaloid 237D and determination of absolute stereochemistry. Heterocycles, 2005, 65(1), 5-8.
[http://dx.doi.org/10.3987/COM-04-10269]
[88]
Tokuyama, T.; Tsujita, T.; Shimada, A.; Garraffo, H.; Spande, T.; Daly, J. Alkaloids from dendrobatid poison frogs: Further cis-decahydroquinolines and 8-methylindolizidines. Tetrahedron, 1991, 47(29), 5401-5414.
[http://dx.doi.org/10.1016/S0040-4020(01)80974-1]
[89]
Toyooka, N.; Dejun, Z.; Nemoto, H.; Garraffo, H.M.; Spande, T.F.; Daly, J.W. The enantioselective synthesis of poison-frog alkaloids (−)-203A,(−)-209B,(−)-231C,(−)-233D, and (−)-235B ″. Tetrahedron Lett., 2006, 47(4), 577-580.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.047]
[90]
Stork, G.; Zhao, K. A stereoselective synthesis of (Z)-1-iodo-1-alkenes. Tetrahedron Lett., 1989, 30(17), 2173-2174.
[http://dx.doi.org/10.1016/S0040-4039(00)99640-0]
[91]
Cimino, G.; Stefano, S.D.; Scognamiglio, G.; Sodano, G.; Trivellone, E. Sarains: a new class of alkaloids from the marine sponge Reniera sarai. Bull. Soc. Chim. Belg., 1986, 95(9‐10), 783-800.
[http://dx.doi.org/10.1002/bscb.19860950907]
[92]
Caprioli, V.; Cimino, G.; De Giulio, A.; Madaio, A.; Scognamiglio, G.; Trivellone, E. Selected biological activities of saraines. Comp. Biochem. Physiol. B, 1992, 103(1), 293-296.
[http://dx.doi.org/10.1016/0305-0491(92)90447-Y] [PMID: 1451440]
[93]
Becker, M.H.; Chua, P.; Downham, R.; Douglas, C.J.; Garg, N.K.; Hiebert, S.; Jaroch, S.; Matsuoka, R.T.; Middleton, J.A.; Ng, F.W.; Overman, L.E. Total synthesis of (+)-sarain A. J. Am. Chem. Soc., 2007, 129(39), 11987-12002.
[http://dx.doi.org/10.1021/ja074300t] [PMID: 17850086]
[94]
Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Götz, A.; Hergott, H.H.; Hofmann, K.; Kober, W.; Krägeloh, K.; Oesterle, T. Trialkylsilyl perfluoroalkanesulfonates: highly reactive silylating agents and Lewis acids in organic synthesis. Synthesis, 1982, 1982(01), 1-26.
[http://dx.doi.org/10.1055/s-1982-29685]
[95]
Nicolaou, K.; Ramphal, J.; Abe, Y. Stereocontrolled total synthesis of (5Z, 8Z, 10E, 12R, 14Z)-12-hydroxy-5, 8, 10, 14-icosatetraenoic acid. Synthesis, 1989, (12), 898-901.
[http://dx.doi.org/10.1055/s-1989-27425]
[96]
Lévy, V.; Zohar, S.; Bardin, C.; Vekhoff, A.; Chaoui, D.; Rio, B.; Legrand, O.; Sentenac, S.; Rousselot, P.; Raffoux, E.; Chast, F.; Chevret, S.; Marie, J.P. A phase I dose-finding and pharmacokinetic study of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients with advanced acute myeloid leukaemia. Br. J. Cancer, 2006, 95(3), 253-259.
[http://dx.doi.org/10.1038/sj.bjc.6603265] [PMID: 16847470]
[97]
Hameed, A.; Blake, A.J.; Hayes, C.J. A second generation formal synthesis of (-)-cephalotaxine. J. Org. Chem., 2008, 73(20), 8045-8048.
[http://dx.doi.org/10.1021/jo801540q] [PMID: 18785776]
[98]
Ohno, K.; Tsuji, J. Organic synthesis by means of noble metal compounds. XXXV. Novel decarbonylation reactions of aldehydes and acyl halides using rhodium complexes. J. Am. Chem. Soc., 1968, 90(1), 99-107.
[http://dx.doi.org/10.1021/ja01003a018]
[99]
Chrétien, F.; Ahmed, S.I.; Masion, A.; Chapleur, Y. Enantiospecific synthesis and biological evaluation of seco analogues of antitumor amaryllidaceae alkaloids. Tetrahedron, 1993, 49(34), 7463-7478.
[http://dx.doi.org/10.1016/S0040-4020(01)87223-9]
[100]
Yadav, J.S.; Satheesh, G.; Murthy, C.V. Synthesis of (+)-lycoricidine by the application of oxidative and regioselective ring-opening of aziridines. Org. Lett., 2010, 12(11), 2544-2547.
[http://dx.doi.org/10.1021/ol100755v] [PMID: 20441205]
[101]
Changying, Z.; Hongzheng, F.; Haimin, L.; Jun, L.; Wenhan, L. New alkaloids from the roots of Stemona japonica Miq. J. Chin. Pharm. Sci., 1999, 8(4), 185-190.
[102]
Pilli, R.A.; Ferreira de Oliveira, M.C. Recent progress in the chemistry of the Stemona alkaloids. Nat. Prod. Rep., 2000, 17(1), 117-127.
[http://dx.doi.org/10.1039/a902437i] [PMID: 10714902]
[103]
Williams, D.R.; Fromhold, M.G.; Earley, J.D. Total synthesis of (-)-stemospironine. Org. Lett., 2001, 3(17), 2721-2724.
[http://dx.doi.org/10.1021/ol016336a] [PMID: 11506618]
[104]
Suau, R.; Rico, R.; López-Romero, J.M.; Nájera, F.; Cuevas, A. Isoquinoline alkaloids from Berberis vulgaris subsp. australis. Phytochemistry, 1998, 49(8), 2545-2549.
[http://dx.doi.org/10.1016/S0031-9422(98)00121-6]
[105]
Schiff, P.L. Bisbenzylisoquinoline alkaloids. J. Nat. Prod., 1997, 60(9), 934-953.
[http://dx.doi.org/10.1021/np9700174]
[106]
Shamma, M.; Foy, J.E.; Miana, G.A. Baluchistanamine. Novel type dimeric isoquinoline alkaloid. J. Am. Chem. Soc., 1974, 96(25), 7809-7811.
[http://dx.doi.org/10.1021/ja00832a033]
[107]
Wang, Y-C.; Georghiou, P.E. First enantioselective total synthesis of (-)-tejedine. Org. Lett., 2002, 4(16), 2675-2678.
[http://dx.doi.org/10.1021/ol0261635] [PMID: 12153207]
[108]
Nicolaou, K.C.; Montagnon, T. Molecules that changed the world; Wiley-VCH Weinheim, 2008.
[109]
Hamlin, A.M.; Kisunzu, J.K.; Sarpong, R. Synthetic strategies toward hetidine and hetisine-type diterpenoid alkaloids. Org. Biomol. Chem., 2014, 12(12), 1846-1860.
[http://dx.doi.org/10.1039/c3ob42541j] [PMID: 24525557]
[110]
Gong, J.; Chen, H.; Liu, X-Y.; Wang, Z-X.; Nie, W.; Qin, Y. Total synthesis of atropurpuran. Nat. Commun., 2016, 7(1), 12183.
[http://dx.doi.org/10.1038/ncomms12183] [PMID: 27387707]
[111]
Blackman, A.J.; Li, C.; Hockless, D.C.; Skelton, B.W.; White, A.H. Cylindricines A and B, novel alkaloids from the ascidian Clavelina cylindrica. Tetrahedron, 1993, 49(38), 8645-8656.
[http://dx.doi.org/10.1016/S0040-4020(01)96270-2]
[112]
Pandey, G.; Janakiram, V. Aza-Quaternary Scaffolds from Selective Bond Cleavage of Bridgehead-Substituted 7-Azabicyclo[2.2.1]heptane: Total Synthesis of (+)-Cylindricines C-E and (-)-Lepadiformine A. Chemistry, 2015, 21(37), 13120-13126.
[http://dx.doi.org/10.1002/chem.201501859] [PMID: 26220441]
[113]
Bissett, D.; Graham, M.A.; Setanoians, A.; Chadwick, G.A.; Wilson, P.; Koier, I.; Henrar, R.; Schwartsmann, G.; Cassidy, J.; Kaye, S.B. Phase I and pharmacokinetic study of rhizoxin. Cancer Res., 1992, 52(10), 2894-2898.
[PMID: 1581905]
[114]
Lafontaine, J.A.; Provencal, D.P.; Gardelli, C.; Leahy, J.W. Enantioselective total synthesis of the antitumor macrolide rhizoxin D. J. Org. Chem., 2003, 68(11), 4215-4234.
[http://dx.doi.org/10.1021/jo034011x] [PMID: 12762720]
[115]
Hamaker, L.K.; Cook, J.M. The synthesis of macroline related sarpagine alkaloids.Alkaloids: Chem. Biolog. Pers; Elsevier, 1995, Vol. 9, pp. 23-84.
[116]
Morfaux, A-M.; Mouton, P.; Massiot, G.; Le Men-Olivier, L. Alkaloids from tonduzia pittieri. Phytochemistry, 1992, 31(3), 1079-1082.
[http://dx.doi.org/10.1016/0031-9422(92)80086-T]
[117]
Zhukovich, E.; Vachnadze, V. Vincamajinine-A new alcaloid from vinca-major Chem. Nat. Comput., 1985, 21(5), 682-720.
[118]
Yu, J.; Wearing, X.Z.; Cook, J.M. Stereocontrolled total synthesis of (-)-vincamajinine and (-)-11-methoxy-17-epivincamajine. J. Am. Chem. Soc., 2004, 126(5), 1358-1359.
[http://dx.doi.org/10.1021/ja039798n] [PMID: 14759191]
[119]
Singh, S.B.; Zink, D.L.; Williams, M.; Polishook, J.D.; Sanchez, M.; Silverman, K.C.; Lingham, R.B. Kampanols: Novel Ras farnesyl-protein transferase inhibitors from Stachybotrys kampalensis. Bioorg. Med. Chem. Lett., 1998, 8(16), 2071-2076.
[http://dx.doi.org/10.1016/S0960-894X(98)00371-0] [PMID: 9873488]
[120]
Nammi, S.; Lodagala, D.S. Ras farnesyltransferase inhibition: a novel and safe approach for cancer chemotherapy. Acta Pharmacol. Sin., 2000, 21(5), 396-404.
[PMID: 11324435]
[121]
Iwasaki, K.; Nakatani, M.; Inoue, M.; Katoh, T. Studies toward the total synthesis of (−)-kampanol A: an efficient construction of the ABCD ring system. Tetrahedron Lett., 2002, 43(44), 7937-7940.
[http://dx.doi.org/10.1016/S0040-4039(02)01859-2]
[122]
PARKER, W. L.; RATHNUM, M. L.; SEINER, V. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia J. antibioti., 1984, 37(5), 431-440.
[123]
Tang, C-J.; Wu, Y. On the synthesis of cepacin A. Tetrahedron, 2007, 63(23), 4887-4906.
[http://dx.doi.org/10.1016/j.tet.2007.03.144]
[124]
Smith, S.; Read, D. Mycorrhizal Symbiosis Academic Press San Diego 605 1997.
[125]
Akiyama, K.; Matsuzaki, K.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435(7043), 824-827.
[http://dx.doi.org/10.1038/nature03608] [PMID: 15944706]
[126]
Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pagès, V.; Dun, E.A.; Pillot, J-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J-C.; Bouwmeester, H.; Bécard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210), 189-194.
[http://dx.doi.org/10.1038/nature07271] [PMID: 18690209]
[127]
Xie, X.; Yoneyama, K.; Kusumoto, D.; Yamada, Y.; Takeuchi, Y.; Sugimoto, Y.; Yoneyama, K. Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Lett., 2008, 49(13), 2066-2068.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.131]
[128]
Shoji, M.; Suzuki, E.; Ueda, M. Total synthesis of (+/-)-5-deoxystrigol via reductive carbon-carbon bond formation. J. Org. Chem., 2009, 74(10), 3966-3969.
[http://dx.doi.org/10.1021/jo9002085] [PMID: 19358528]
[129]
Alali, F.Q.; Rogers, L.; Zhang, Y.; McLaughlin, J.L. Unusual bioactive annonaceous acetogenins from Goniothalamus giganteus. Tetrahedron, 1998, 54(22), 5833-5844.
[http://dx.doi.org/10.1016/S0040-4020(98)00286-5]
[130]
Takahashi, S.; Yonezawa, Y.; Kubota, A.; Ogawa, N.; Maeda, K.; Koshino, H.; Nakata, T.; Yoshida, H.; Mizushina, Y. Pyranicin, a non-classical annonaceous acetogenin, is a potent inhibitor of DNA polymerase, topoisomerase and human cancer cell growth. Int. J. Oncol., 2008, 32(2), 451-458.
[http://dx.doi.org/10.3892/ijo.32.2.451] [PMID: 18202768]
[131]
Crimmins, M.T.; Jacobs, D.L. Asymmetric total synthesis of pyranicin. Org. Lett., 2009, 11(12), 2695-2698.
[http://dx.doi.org/10.1021/ol900814w] [PMID: 19438254]
[132]
Zdero, C.; Lehmann, L.; Bohlmann, F. Chemotaxonomy of Athanasia and related genera. Phytochemistry, 1991, 30(4), 1161-1163.
[http://dx.doi.org/10.1016/S0031-9422(00)95195-1]
[133]
Tietze, L.F.; Wolfram, T.; Holstein, J.J.; Dittrich, B. First enantioselective total synthesis of (+)-(R)-Pinnatolide using an asymmetric domino allylation reaction. Org. Lett., 2012, 14(16), 4035-4037.
[http://dx.doi.org/10.1021/ol301932d] [PMID: 22853329]
[134]
Boeckman, R.K., Jr; Shao, P.; Mullins, J.J. The D ess‐M artin Periodinane: 1, 1, 1‐Triacetoxy‐1, 1‐Dihydro‐1, 2‐Benziodoxol‐3 (1H)‐One: 1, 2‐Benziodoxol‐3 (1H)‐one, 1, 1, 1‐tris (acetyloxy)‐1, 1‐dihydro‐. Org. Synth., 2003, 77, 141-141.
[135]
Bister, B.; Bischoff, D.; Ströbele, M.; Riedlinger, J.; Reicke, A.; Wolter, F.; Bull, A.T.; Zähner, H.; Fiedler, H.P.; Süssmuth, R.D. Abyssomicin C–ein polycyclisches Antibiotikum aus einem marinen Verrucosispora‐Stamm als Inhibitor für die p‐Aminobenzoesäure/Tetrahydrofolat‐Biosynthese. Angew. Chem., 2004, 116(19), 2628-2630.
[http://dx.doi.org/10.1002/ange.200353160]
[136]
Nicolaou, K.C.; Chen, J.S.; Edmonds, D.J.; Estrada, A.A. Fortschritte in der Chemie und Biologie natürlicher Antibiotika. Angew. Chem., 2009, 121(4), 670-732.
[http://dx.doi.org/10.1002/ange.200801695]
[137]
Riedlinger, J.; Reicke, A.; Zähner, H.; Krismer, B.; Bull, A.T.; Maldonado, L.A.; Ward, A.C.; Goodfellow, M.; Bister, B.; Bischoff, D.; Süssmuth, R.D.; Fiedler, H.P. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J. Antibiot. (Tokyo), 2004, 57(4), 271-279.
[http://dx.doi.org/10.7164/antibiotics.57.271] [PMID: 15217192]
[138]
Bihelovic, F.; Saicic, R.N. Total synthesis of (-)-atrop-abyssomicin C. Angew. Chem. Int. Ed. Engl., 2012, 51(23), 5687-5691.
[http://dx.doi.org/10.1002/anie.201108223] [PMID: 22528978]
[139]
Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Selective grignard-type carbonyl addition of alkenyl halides mediated by chromium (II) chloride. Tetrahedron Lett., 1983, 24(47), 5281-5284.
[http://dx.doi.org/10.1016/S0040-4039(00)88417-8]
[140]
Masuda, T.; Oyama, Y.; Yamamoto, N.; Umebayashi, C.; Nakao, H.; Toi, Y.; Takeda, Y.; Nakamoto, K.; Kuninaga, H.; Nishizato, Y. Cytotoxic screening of medicinal and edible plants in Okinawa, Japan, and identification of the main toxic constituent of Rhodea japonica (Omoto) Bioscie. biotech. biochem., 2003, 67(6), 1401-1404.
[141]
Langenhan, J.M.; Peters, N.R.; Guzei, I.A.; Hoffmann, F.M.; Thorson, J.S. Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12305-12310.
[http://dx.doi.org/10.1073/pnas.0503270102] [PMID: 16105948]
[142]
Jung, M.E.; Guzaev, M. Studies toward the enantiospecific total synthesis of rhodexin A. J. Org. Chem., 2013, 78(15), 7518-7526.
[http://dx.doi.org/10.1021/jo400909t] [PMID: 23834072]
[143]
Keller, S.; Schadt, H.S.; Ortel, I.; Süssmuth, R.D. Action of atrop-abyssomicin C as an inhibitor of 4-amino-4-deoxychorismate synthase PabB. Angew. Chem. Int. Ed. Engl., 2007, 46(43), 8284-8286.
[http://dx.doi.org/10.1002/anie.200701836] [PMID: 17886307]
[144]
Bihelovic, F.; Karadzic, I.; Matovic, R.; Saicic, R.N. Total synthesis and biological evaluation of (-)-atrop-abyssomicin C. Org. Biomol. Chem., 2013, 11(33), 5413-5424.
[http://dx.doi.org/10.1039/c3ob40692j] [PMID: 23839049]
[145]
Barrett, A.G.; Hamprecht, D.; Ohkubo, M. Dess-Martin periodinane oxidation of alcohols in the presence of stabilized phosphorus ylides: A convenient method for the homologation of alcohols via unstable aldehydes. J. Org. Chem., 1997, 62(26), 9376-9378.
[http://dx.doi.org/10.1021/jo971569u]
[146]
Paquette, L.A.; Hofferberth, J.E. The α‐Hydroxy Ketone (α‐Ketol) and Related Rearrangements. Org. React., 2004, 62, 477-567.
[147]
Aoyagi, Y.; Yamazaki, A.; Nakatsugawa, C.; Fukaya, H.; Takeya, K.; Kawauchi, S.; Izumi, H. Salvileucalin B, a novel diterpenoid with an unprecedented rearranged neoclerodane skeleton from Salvia leucantha Cav. Org. Lett., 2008, 10(20), 4429-4432.
[http://dx.doi.org/10.1021/ol801620u] [PMID: 18788744]
[148]
Taber, D.F.; Paquette, C.M. Synthesis of the pentacylic core of (+)-salvileucalin B. J. Org. Chem., 2014, 79(8), 3410-3413.
[http://dx.doi.org/10.1021/jo500164x] [PMID: 24661149]
[149]
Raistrick, H.; Smith, G. Studies in the biochemistry of micro-organisms: The metabolic products of Byssochlamys fulva Olliver and Smith. Biochem. J., 1933, 27(6), 1814-1819.
[http://dx.doi.org/10.1042/bj0271814] [PMID: 16745303]
[150]
Szwalbe, A.J.; Williams, K.; O’Flynn, D.E.; Bailey, A.M.; Mulholland, N.P.; Vincent, J.L.; Willis, C.L.; Cox, R.J.; Simpson, T.J. Novel nonadride, heptadride and maleic acid metabolites from the byssochlamic acid producer Byssochlamys fulva IMI 40021 - an insight into the biosynthesis of maleidrides. Chem. Commun. (Camb.), 2015, 51(96), 17088-17091.
[http://dx.doi.org/10.1039/C5CC06988B] [PMID: 26452099]
[151]
Polonsky, J. Quassinoid bitter principles II.Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer, 1985, pp. 221-264.
[http://dx.doi.org/10.1007/978-3-7091-8790-6_4]
[152]
Fernando, E.S.; Gadek, P.A.; Quinn, C.J. Simaroubaceae, an artificial construct: evidence from rbcL sequence variation. Am. J. Bot., 1995, 82(1), 92-103.
[http://dx.doi.org/10.1002/j.1537-2197.1995.tb15653.x]
[153]
Koike, K.; Yokoh, M.; Furukawa, M.; Ishii, S.; Ohmoto, T. Picrasane quassinoids from Picrasma javanica. Phytochemistry, 1995, 40(1), 233-238.
[http://dx.doi.org/10.1016/0031-9422(95)00176-8]
[154]
Daido, M.; Ohno, N.; Imamura, K.; Fukamiya, N.; Hatakoshi, M.; Yamazaki, H.; Tagahara, K.; Lee, K-H.; Okano, M. Antifeedant and insecticidal activity of quassinoids against the diamondback moth (Plutella xylostella) and structure-activity relationships. Biosci. Biotechnol. Biochem., 1995, 59(6), 974-979.
[http://dx.doi.org/10.1271/bbb.59.974]
[155]
Yu, H.; Wright, C.; Cai, Y.; Yang, S.; Phillipson, J.; Kirby, G.; Warhurst, D. Antiprotozoal activities of Centipeda minima. Phytother. Res., 1994, 8(7), 436-438.
[http://dx.doi.org/10.1002/ptr.2650080713]
[156]
Ang, H.H.; Chan, K.L.; Mak, J.W. In vitro antimalarial activity of quassinoids from Eurycoma longifolia against Malaysian chloroquine-resistant Plasmodium falciparum isolates. Planta Med., 1995, 61(2), 177-178.
[http://dx.doi.org/10.1055/s-2006-958042] [PMID: 7753926]
[157]
Okano, M.; Fukamiya, N.; Tagahara, K.; Tokuda, H.; Iwashima, A.; Nishino, H.; Lee, K-H. Inhibitory effects of quassinoids on Epstein-Barr virus activation. Cancer Lett., 1995, 94(2), 139-146.
[http://dx.doi.org/10.1016/0304-3835(95)03839-O] [PMID: 7634241]
[158]
Shing, T.K.; Zhu, X.Y.; Yeung, Y.Y. Studies towards simalikalactone D and quassimarin: construction of an advanced pentacyclic intermediate. Chemistry, 2003, 9(22), 5489-5500.
[http://dx.doi.org/10.1002/chem.200305158] [PMID: 14639632]
[159]
Tunac, J.; Graham, B.; Dobson, W. Novel antitumor agents Cl-920, PD 113, 270 and PD 113, 271. J. Antibiot. (Tokyo), 1983, 36(12), 1595-1600.
[http://dx.doi.org/10.7164/antibiotics.36.1595] [PMID: 6689323]
[160]
Miyashita, K.; Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. Total synthesis of an antitumor antibiotic, Fostriecin (CI-920). J. Am. Chem. Soc., 2003, 125(27), 8238-8243.
[http://dx.doi.org/10.1021/ja030133v] [PMID: 12837094]
[161]
Nagle, D.G.; Gerwick, W.H. Structure and stereochemistry of constanolactones AG, lactonized cyclopropyl oxylipins from the red marine alga Constantinea simplex. J. Org. Chem., 1994, 59(24), 7227-7237.
[http://dx.doi.org/10.1021/jo00103a012]
[162]
Pietruszka, J.; Wilhelm, T. Total Synthesis of Marine OxylipinsConstanolactone A and B. Synlett, 2003, 2003(11), 1698-1700.
[http://dx.doi.org/10.1055/s-2003-40986]
[163]
Ganame, D.; Quach, T.; Poole, C.; Rizzacasa, M.A. Synthesis of the C9–C29 fragments of ajudazols A and B. Tetrahedron Lett., 2007, 48(33), 5841-5843.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.072]
[164]
Wipf, P.; Lim, S. Total synthesis of the enantiomer of the antiviral marine natural product hennoxazole A. J. Am. Chem. Soc., 1995, 117(1), 558-559.
[http://dx.doi.org/10.1021/ja00106a075]
[165]
Poch, G.K.; Gloer, J.B. Helicascolides A and B: new lactones from the marine fungus Helicascus kanaloanus. J. Nat. Prod., 1989, 52(2), 257-260.
[http://dx.doi.org/10.1021/np50062a006] [PMID: 2746255]
[166]
Tarman, K.; Palm, G.J.; Porzel, A.; Merzweiler, K.; Arnold, N.; Wessjohann, L.A.; Unterseher, M.; Lindequist, U. Helicascolide C, a new lactone from an Indonesian marine algicolous strain of Daldinia eschscholzii (Xylariaceae, Ascomycota). Phytochem. Lett., 2012, 5(1), 83-86.
[http://dx.doi.org/10.1016/j.phytol.2011.10.006]
[167]
Yadav, J.S.; Reddy, A.B.; Shankar, K.S. Concise total synthesis of helicascolides A, B, and C. Synthesis, 2013, 45(08), 1034-1038.
[http://dx.doi.org/10.1055/s-0032-1316861]
[168]
Fujita, E.; Node, M. Diterpenoids of Rabdosia species.Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer, 1984, pp. 77-157.
[http://dx.doi.org/10.1007/978-3-7091-8759-3_3]
[169]
Sun, H.; Xu, Y.; Jiang, B. Diterpenoids from Isodon species; Sci; Beij, 2001.
[170]
Li, X.; Pu, J.X.; Weng, Z.Y.; Zhao, Y.; Zhao, Y.; Xiao, W.L.; Sun, H.D. 6,7-seco-ent-kaurane diterpenoids from Isodon sculponeatus with cytotoxic activity. Chem. Biodivers., 2010, 7(12), 2888-2896.
[http://dx.doi.org/10.1002/cbdv.200900302] [PMID: 21162001]
[171]
Pan, Z.; Zheng, C.; Wang, H.; Chen, Y.; Li, Y.; Cheng, B.; Zhai, H. Total synthesis of (±)-sculponeatin N. Org. Lett., 2014, 16(1), 216-219.
[http://dx.doi.org/10.1021/ol403208g] [PMID: 24295285]
[172]
Seo, Y.; Cho, K.W.; Rho, J-R.; Shin, J.; Kwon, B-M.; Bok, S-H.; Song, J-I. Solandelactones AI, lactonized cyclopropyl oxylipins isolated from the hydroid Solanderia secunda. Tetrahedron, 1996, 52(32), 10583-10596.
[http://dx.doi.org/10.1016/0040-4020(96)00606-0]
[173]
Niwa, H.; Wakamatsu, K.; Yamada, K. Halicholactone and neohalicholactone, two novel fatty acid metabolites from the marine sponge Halichondria okadai Kadota. Tetrahedron Lett., 1989, 30(34), 4543-4546.
[http://dx.doi.org/10.1016/S0040-4039(01)80740-1]
[174]
Lee, S-H.; Kim, M-J.; Bok, S.H.; Lee, H.; Kwon, B-M.; Shin, J.; Seo, Y. Arteminolide, an inhibitor of farnesyl transferase from Artemisia sylvatica. J. Org. Chem., 1998, 63(20), 7111-7113.
[http://dx.doi.org/10.1021/jo980919p] [PMID: 11672343]
[175]
Pietruszka, J.; Rieche, A.C. Total synthesis of marine oxylipins solandelactones A–H. Adv. Synth. Catal., 2008, 350(9), 1407-1412.
[http://dx.doi.org/10.1002/adsc.200800198]
[176]
Wavrin, L.; Viala, J. Clean and efficient oxidation of homoallylic and homopropargylic alcohols into β, γ-unsaturated aldehydes by the Dess-Martin periodinane. Synthesis, 2002, (03), 0326-0330.
[177]
Kubota, K.; Leighton, J.L. A highly practical and enantioselective reagent for the allylation of aldehydes. Angew. Chem. Int. Ed. Engl., 2003, 42(8), 946-948.
[http://dx.doi.org/10.1002/anie.200390252] [PMID: 12596186]
[178]
Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.; Aoki, S. Callystatin A, a potent cytotoxic polyketide from the marine sponge, Callyspongia truncata. Tetrahedron Lett., 1997, 38(16), 2859-2862.
[http://dx.doi.org/10.1016/S0040-4039(97)00482-6]
[179]
Dias, L.C.; Meira, P.R. Synthesis of C13-C22 fragment of the marine sponge polyketide callystatin A. Tetrahedron Lett., 2002, 43(2), 185-187.
[http://dx.doi.org/10.1016/S0040-4039(01)02104-9]
[180]
Amemura-Maekawa, J.; Hayakawa, Y.; Sugie, H.; Moribayashi, A.; Kura, F.; Chang, B.; Wada, A.; Watanabe, H. Legioliulin, a new isocoumarin compound responsible for blue-white autofluorescence in Legionella (Fluoribacter) dumoffii under long-wavelength UV light. Biochem. Biophys. Res. Commun., 2004, 323(3), 954-959.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.180] [PMID: 15381093]
[181]
Ahrendt, T.; Miltenberger, M.; Haneburger, I.; Kirchner, F.; Kronenwerth, M.; Brachmann, A.O.; Hilbi, H.; Bode, H.B. Biosynthesis of the natural fluorophore legioliulin from legionella. ChemBioChem, 2013, 14(12), 1415-1418.
[http://dx.doi.org/10.1002/cbic.201300373] [PMID: 23821465]
[182]
Asai, M.; Hattori, Y.; Makabe, H. Synthesis of legioliulin, a fluorescent isocoumarin compound, isolated from Legionella dumoffii using cyclic acylpalladation and Heck reaction. Tetrahedron Lett., 2016, 57(35), 3942-3944.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.064]
[183]
Sitachitta, N.; Gadepalli, M.; Davidson, B.S. New α-pyrone-containing metabolites from a marine-derived actinomycete. Tetrahedron, 1996, 52(24), 8073-8080.
[http://dx.doi.org/10.1016/0040-4020(96)00391-2]
[184]
Kirsch, S.; Bach, T. Total synthesis of (+)-wailupemycin B. Angew. Chem. Int. Ed. Engl., 2003, 42(38), 4685-4687.
[http://dx.doi.org/10.1002/anie.200351455] [PMID: 14533164]
[185]
Nicolaou, K.C.; Jung, J.; Yoon, W.H.; Fong, K.C.; Choi, H-S.; He, Y.; Zhong, Y-L.; Baran, P.S. Total synthesis of the CP-molecules (CP-263,114 and CP-225,917, phomoidrides B and A). 1. Racemic and asymmetric synthesis of bicyclo[4.3.1] key building blocks. J. Am. Chem. Soc., 2002, 124(10), 2183-2189.
[http://dx.doi.org/10.1021/ja012010l] [PMID: 11878972]
[186]
Umezawa, I.; Komiyama, K.; Oka, H.; Okada, K.; Tomisaka, S.; Miyano, T.; Takano, S. A new antitumor antibiotic, kazusamycin. J. Antibiot. (Tokyo), 1984, 37(7), 706-711.
[http://dx.doi.org/10.7164/antibiotics.37.706] [PMID: 6432763]
[187]
Komiyama, K.; Okada, K.; Hirokawa, Y.; Masuda, K.; Tomisaka, S.; Umezawa, I. Antitumor activity of a new antibiotic, kazusamycin. J. Antibiot. (Tokyo), 1985, 38(2), 224-229.
[http://dx.doi.org/10.7164/antibiotics.38.224] [PMID: 3922935]
[188]
Arai, N.; Chikaraishi, N.; Omura, S.; Kuwajima, I. First total synthesis of the antitumor compound (-)-kazusamycin A and absolute structure determination. Org. Lett., 2004, 6(17), 2845-2848.
[http://dx.doi.org/10.1021/ol049219z] [PMID: 15330629]
[189]
Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. On the selectivity of deprotection of benzyl, MPM (4-methoxybenzyl) and DMPM (3, 4-dimethoxybenzyl) protecting groups for hydroxy functions. Tetrahedron, 1986, 42(11), 3021-3028.
[http://dx.doi.org/10.1016/S0040-4020(01)90593-9]
[190]
Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Narsaiah, A.V. Recyclable 2nd generation ionic liquids as green solvents for the oxidation of alcohols with hypervalent iodine reagents. Tetrahedron, 2004, 60(9), 2131-2135.
[http://dx.doi.org/10.1016/j.tet.2003.12.056]
[191]
Corey, E. A synthetic method for formyl-> ethynyl conversion. Tetrahedron Lett., 1972, 13(6), 3769-3772.
[http://dx.doi.org/10.1016/S0040-4039(01)94157-7]
[192]
Murakami, N.; Sugimoto, M.; Kobayashi, M. Participation of the β-hydroxyketone part for potent cytotoxicity of callystatin A, a spongean polyketide. Bioorg. Med. Chem., 2001, 9(1), 57-67.
[http://dx.doi.org/10.1016/S0968-0896(00)00220-0] [PMID: 11197346]
[193]
Dias, L.C.; Meira, P.R. Total synthesis of the potent antitumor polyketide (-)-callystatin A. J. Org. Chem., 2005, 70(12), 4762-4773.
[http://dx.doi.org/10.1021/jo050352u] [PMID: 15932316]
[194]
Goetz, M.A.; Zink, D.L.; Dezeny, G.; Dombrowski, A.; Polishook, J.D.; Felix, J.P.; Slaughter, R.S.; Singh, S.B. Diterpenoid pyrones, novel blockers of the voltage-gated potassium channel Kv1. 3 from fungal fermentations. Tetrahedron Lett., 2001, 42(7), 1255-1257.
[http://dx.doi.org/10.1016/S0040-4039(00)02258-9]
[195]
Schmalhofer, W.A.; Bao, J.; McManus, O.B.; Green, B.; Matyskiela, M.; Wunderler, D.; Bugianesi, R.M.; Felix, J.P.; Hanner, M.; Linde-Arias, A-R.; Ponte, C.G.; Velasco, L.; Koo, G.; Staruch, M.J.; Miao, S.; Parsons, W.H.; Rupprecht, K.; Slaughter, R.S.; Kaczorowski, G.J.; Garcia, M.L. Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochemistry, 2002, 41(24), 7781-7794.
[http://dx.doi.org/10.1021/bi025722c] [PMID: 12056910]
[196]
Abe, T.; Iwasaki, K.; Inoue, M.; Suzuki, T.; Watanabe, K.; Katoh, T. Convergent and enantioselective total synthesis of (−)-nalanthalide, a potential Kv1. 3 blocking immunosuppressant. Tetrahedron Lett., 2006, 47(19), 3251-3255.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.039]
[197]
Singh, S.B.; Zink, D.L.; Dombrowski, A.W.; Dezeny, G.; Bills, G.F.; Felix, J.P.; Slaughter, R.S.; Goetz, M.A.; Candelalides, A. Candelalides A-C: novel diterpenoid pyrones from fermentations of Sesquicillium candelabrum as blockers of the voltage-gated potassium channel Kv1.3. Org. Lett., 2001, 3(2), 247-250.
[http://dx.doi.org/10.1021/ol006891x] [PMID: 11430046]
[198]
Oguchi, T.; Watanabe, K.; Ohkubo, K.; Abe, H.; Katoh, T. Enantioselective total synthesis of (-)-candelalides A, B and C: potential Kv1.3 blocking immunosuppressive agents. Chemistry, 2009, 15(12), 2826-2845.
[http://dx.doi.org/10.1002/chem.200802122] [PMID: 19191240]
[199]
Engel, L.; Erkel, G.; Anke, T.; Sterner, O. Sesquicillin, an inhibitor of glucocorticoid mediated signal transduction. J. Antibiot. (Tokyo), 1998, 51(5), 518-521.
[http://dx.doi.org/10.7164/antibiotics.51.518] [PMID: 9666183]
[200]
Jeong, H-W.; Lee, H-J.; Kho, Y-H.; Son, K-H.; Han, M.Y.; Lim, J-S.; Lee, M-Y.; Han, D.C.; Ha, J-H.; Kwon, B-M. Biological effects of G1 phase arrest compound, sesquicillin, in human breast cancer cell lines. Bioorg. Med. Chem., 2002, 10(10), 3129-3134.
[http://dx.doi.org/10.1016/S0968-0896(02)00225-0] [PMID: 12150857]
[201]
Uchida, R.; Imasato, R.; Yamaguchi, Y.; Masuma, R.; Shiomi, K.; Tomoda, H.; Ōmura, S. New sesquicillins, insecticidal antibiotics produced by Albophoma sp. FKI-1778. J. Antibiot. (Tokyo), 2005, 58(6), 397-404.
[http://dx.doi.org/10.1038/ja.2005.50] [PMID: 16156516]
[202]
Oguchi, T.; Watanabe, K.; Abe, H. Enantioselective total synthesis of novel diterpenoid pyrones (+)-sesquicillin and (-)-nalanthalide from fungal fermentations. Heterocycles, 2010, 80(1), 229-250.
[http://dx.doi.org/10.3987/COM-08-S(S)2]
[203]
Lee, J.C.; Lobkovsky, E.; Pliam, N.B.; Strobel, G.; Clardy, J. Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J. Org. Chem., 1995, 60(22), 7076-7077.
[http://dx.doi.org/10.1021/jo00127a001]
[204]
Kikuchi, T.; Mineta, M.; Ohtaka, J.; Matsumoto, N.; Katoh, T. Enantioselective Total Synthesis of (–)‐Subglutinols A and B: Potential Immunosuppressive Agents Isolated from a Microorganism. Eur. J. Org. Chem., 2011, 2011(26), 5020-5030.
[http://dx.doi.org/10.1002/ejoc.201100517]
[205]
Kredich, N.M.; Guarino, A.J. An improved method of isolation and determination of cordycepin. Biochim. Biophys. Acta, 1960, 41, 363-365.
[http://dx.doi.org/10.1016/0006-3002(60)90027-5] [PMID: 14411879]
[206]
Mohapatra, D.K.; Ramesh, D.K.; Giardello, M.A.; Chorghade, M.S.; Gurjar, M.K.; Grubbs, R.H. Protecting group directed ring-closing metathesis (RCM): the first total synthesis of an anti-malarial nonenolide. Tetrahedron Lett., 2007, 48(14), 2621-2625.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.040]
[207]
Papendorf, O.; König, G.M.; Wright, A.D.; Chorus, I.; Oberemm, A. Mueggelone, a novel inhibitor of fish development from the fresh water cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod., 1997, 60(12), 1298-1300.
[http://dx.doi.org/10.1021/np970231s] [PMID: 9428164]
[208]
Kumar, D.A.; Meshram, H.M. Concise stereoselective total synthesis of (+)-mueggelone. Synth. Commun., 2013, 43(8), 1145-1154.
[http://dx.doi.org/10.1080/00397911.2011.624395]
[209]
Dräger, G.; Kirschning, A.; Thiericke, R.; Zerlin, M. Decanolides, 10-membered lactones of natural origin. Nat. Prod. Rep., 1996, 13(5), 365-375.
[http://dx.doi.org/10.1039/NP9961300365]
[210]
Lu, S.; Kurtán, T.; Yang, G.; Sun, P.; Mándi, A.; Krohn, K.; Draeger, S.; Schulz, B.; Yi, Y.; Li, L. Cytospolides A–E, new nonanolides from an endophytic fungus, Cytospora sp. Eur. J. Org. Chem., 2011, 2011(28), 5452-5459.
[http://dx.doi.org/10.1002/ejoc.201100675]
[211]
Kamal, A.; Balakrishna, M.; Reddy, P.V.; Rahim, A. First total synthesis of the E-and Z-isomers of cytospolide-D. Tetrahed. Asymm., 2014, 25(2), 148-155.
[http://dx.doi.org/10.1016/j.tetasy.2013.12.004]
[212]
Erickson, K.L.; Beutler, J.A.; Cardellina, J.H.; Boyd, M.R. Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J. Org. Chem., 2001, 66(4), 1532-1532.
[http://dx.doi.org/10.1021/jo004040x] [PMID: 11671930]
[213]
Boyd, M.R.; Farina, C.; Belfiore, P.; Gagliardi, S.; Kim, J.W.; Hayakawa, Y.; Beutler, J.A.; McKee, T.C.; Bowman, B.J.; Bowman, E.J. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. J. Pharmacol. Exp. Ther., 2001, 297(1), 114-120.
[PMID: 11259534]
[214]
Holloway, G.A.; Hügel, H.M.; Rizzacasa, M.A. Formal total synthesis of salicylihalamides A and B. J. Org. Chem., 2003, 68(6), 2200-2204.
[http://dx.doi.org/10.1021/jo026798h] [PMID: 12636381]
[215]
Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y.; Aigialomycins, A. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J. Org. Chem., 2002, 67(5), 1561-1566.
[http://dx.doi.org/10.1021/jo010930g] [PMID: 11871887]
[216]
Lu, J.; Ma, J.; Xie, X.; Chen, B.; She, X.; Pan, X. Enantioselective total synthesis of aigialomycin D. Tetrahed. Asymm., 2006, 17(7), 1066-1073.
[http://dx.doi.org/10.1016/j.tetasy.2006.03.027]
[217]
McGUIRE. J.M.; Bunch, R.L.; Anderson, R.C.; Boaz, H.E.; Flynn, E.H.; Powell, H.M.; Smith, J.W. Ilotycin. A new antibiotic. Antibiot Chemother (Northfield), 1952, 2(6), 281-283.
[PMID: 24541924]
[218]
Pal, S. A journey across the sequential development of macrolides and ketolides related to erythromycin. Tetrahedron, 2006, 62, 3171-3200.
[http://dx.doi.org/10.1016/j.tet.2005.11.064]
[219]
Breton, P.; Hergenrother, P.J.; Hida, T.; Hodgson, A.; Judd, A.S.; Kraynack, E.; Kym, P.R.; Lee, W-C.; Loft, M.S.; Yamashita, M. Total synthesis of erythromycin B. Tetrahedron, 2007, 63(26), 5709-5729.
[http://dx.doi.org/10.1016/j.tet.2007.02.044]
[220]
Higashibayashi, S.; Shinko, K.; Ishizu, T.; Hashimoto, K.; Shirahama, H.; Nakata, M. Selective deprotection of t-butyldiphenylsilyl ethers in the presence of t-butyldimethylsilyl ethers by tetrabutylammonium fluoride, acetic acid, and water. Synlett, 2000, 2000(09), 1306-1308.
[http://dx.doi.org/10.1055/s-2000-7158]
[221]
Motozaki, T.; Sawamura, K.; Suzuki, A.; Yoshida, K.; Ueki, T.; Ohara, A.; Munakata, R.; Takao, K.; Tadano, K. Total synthesis of (+)-tubelactomicin A. 1. Stereoselective synthesis of the lower-half segment by an intramolecular Diels-Alder approach. Org. Lett., 2005, 7(11), 2261-2264.
[http://dx.doi.org/10.1021/ol0507625] [PMID: 15901184]
[222]
Sawamura, K.; Yoshida, K.; Suzuki, A.; Motozaki, T.; Kozawa, I.; Hayamizu, T.; Munakata, R.; Takao, K.; Tadano, K. Total syntheses of natural tubelactomicins B, D, and E: establishment of their stereochemistries. J. Org. Chem., 2007, 72(16), 6143-6148.
[http://dx.doi.org/10.1021/jo0708442] [PMID: 17625888]
[223]
Seki-Asano, M.; Okazaki, T.; Yamagishi, M.; Sakai, N.; Hanada, K.; Mizoue, K. Isolation and characterization of new 18-membered macrolides FD-891 and FD-892. J. Antibiot. (Tokyo), 1994, 47(11), 1226-1233.
[http://dx.doi.org/10.7164/antibiotics.47.1226] [PMID: 8002384]
[224]
Dröse, S.; Bindseil, K.U.; Bowman, E.J.; Siebers, A.; Zeeck, A.; Altendorf, K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry, 1993, 32(15), 3902-3906.
[http://dx.doi.org/10.1021/bi00066a008] [PMID: 8385991]
[225]
Crimmins, M.T.; Caussanel, F. Enantioselective total synthesis of FD-891. J. Am. Chem. Soc., 2006, 128(10), 3128-3129.
[http://dx.doi.org/10.1021/ja060018v] [PMID: 16522077]
[226]
Howe, G.P.; Wang, S.; Procter, G. Stereoselective additions to α, β-epoxy-aldehydes; the formation of “non-chelation controlled” products. Tetrahedron Lett., 1987, 28(23), 2629-2632.
[http://dx.doi.org/10.1016/S0040-4039(00)96166-5]
[227]
West, L.M.; Northcote, P.T.; Battershill, C.N. Peloruside A: a potent cytotoxic macrolide isolated from the new zealand marine sponge Mycale sp. J. Org. Chem., 2000, 65(2), 445-449.
[http://dx.doi.org/10.1021/jo991296y] [PMID: 10813954]
[228]
Miller, J. H.; Singh, A. J.; Northcote, P. T. Microtubule-stabilizing drugs from marine sponges: Focus on peloruside A and zampanolide Mar. drug., 2010, 8(4), 1059-1079.
[http://dx.doi.org/10.3390/md8041059]
[229]
Brackovic, A.; Harvey, J.E. Synthetic, semisynthetic and natural analogues of peloruside A. Chem. Commun. (Camb.), 2015, 51(23), 4750-4765.
[http://dx.doi.org/10.1039/C4CC09785H] [PMID: 25642465]
[230]
Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez‐Paloma, L.; Riccio, R. Dactylolide, a new cytotoxic macrolide from the Vanuatu sponge Dactylospongia sp. Eur. J. Org. Chem., 2001, 2001(4), 775-778.
[http://dx.doi.org/10.1002/1099-0690(200102)2001:4<775:AID-EJOC775>3.0.CO;2-Z]
[231]
Smith, A.B., III; Safonov, I.G. Total synthesis of (+)-dactylolide. Org. Lett., 2002, 4(4), 635-637.
[http://dx.doi.org/10.1021/ol017271e] [PMID: 11843610]
[232]
Hoye, T.R.; Hu, M. Macrolactonization via Ti(IV)-mediated epoxy-acid coupling: a total synthesis of (-)-dactylolide. [and zampanolide] J. Am. Chem. Soc., 2003, 125(32), 9576-9577.
[http://dx.doi.org/10.1021/ja035579q] [PMID: 12904009]
[233]
Williams, D.R.; Clark, M.P.; Berliner, M.A. Synthetic studies toward phorboxazole A. Stereoselective synthesis of the C3 C19 and C20 C32 subunits. Tetrahedron Lett., 1999, 40(12), 2287-2290.
[http://dx.doi.org/10.1016/S0040-4039(99)00209-9]
[234]
Keck, G.E.; Covel, J.A.; Schiff, T.; Yu, T. Pyran annulation: asymmetric synthesis of 2,6-disubstituted-4-methylene tetrahydropyrans. Org. Lett., 2002, 4(7), 1189-1192.
[http://dx.doi.org/10.1021/ol025645d] [PMID: 11922815]
[235]
Ohta, S.; Uy, M.M.; Yanai, M.; Ohta, E.; Hirata, T.; Ikegami, S. Exiguolide, a new macrolide from the marine sponge Geodia exigua. Tetrahedron Lett., 2006, 47(12), 1957-1960.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.062]
[236]
Wang, X.; Feng, T.; Yang, L.; Liu, C.; Meng, X.; Qiu, X. dbEST-derived SSR markers in sea urchin (Hemicentrotus pulcherrimus). Conserv. Genet., 2009, 10(3), 729-731.
[http://dx.doi.org/10.1007/s10592-008-9632-z]
[237]
Fuwa, H.; Mizunuma, K.; Sasaki, M.; Suzuki, T.; Kubo, H. Total synthesis and biological evaluation of (-)-exiguolide analogues: importance of the macrocyclic backbone. Org. Biomol. Chem., 2013, 11(21), 3442-3450.
[http://dx.doi.org/10.1039/c3ob40131f] [PMID: 23538720]
[238]
Lu, Y.; Woo, S.K.; Krische, M.J. Total synthesis of bryostatin 7 via C-C bond-forming hydrogenation. J. Am. Chem. Soc., 2011, 133(35), 13876-13879.
[http://dx.doi.org/10.1021/ja205673e] [PMID: 21780806]
[239]
Li, H.; Xie, H.; Zhang, Z.; Xu, Y.; Lu, J.; Gao, L.; Song, Z. Total synthesis of (-)-exiguolide via an organosilane-based strategy. Chem. Commun. (Camb.), 2015, 51(40), 8484-8487.
[http://dx.doi.org/10.1039/C5CC02448J] [PMID: 25891134]
[240]
Zhou, H.; Loh, T-P. One-pot total syntheses of natural products containing a THP-ring backbone:(±)-centrolobine and (±)-civet cat secretion. Tetrahedron Lett., 2009, 50(30), 4368-4371.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.053]
[241]
Bal, B.S.; Childers, W.E., Jr; Pinnick, H.W. Oxidation of α, β-un saturated aldehydes. Tetrahedron, 1981, 37(11), 2091-2096.
[http://dx.doi.org/10.1016/S0040-4020(01)97963-3]
[242]
Pettit, G.R.; Chicacz, Z.A.; Gao, F.; Herald, C.L.; Boyd, M.R.; Schmidt, J.M.; Hooper, J.N. Antineoplastic agents. 257. Isolation and structure of spongistatin 1. J. Org. Chem., 1993, 58(6), 1302-1304.
[http://dx.doi.org/10.1021/jo00058a004]
[243]
Terauchi, T.; Tanaka, T.; Terauchi, T.; Morita, M.; Kimijima, K.; Sato, I.; Shoji, W.; Nakamura, Y.; Tsukada, T.; Tsunoda, T. Formal total synthesis of altohyrtin C (spongistatin 2). Part 2: Construction of fully elaborated ABCD and EF fragments. Tetrahedron Lett., 2003, 44(42), 7747-7751.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.083]
[244]
Hartung, I.V.; Niess, B.; Haustedt, L.O.; Hoffmann, H.M.R. Toward the total synthesis of disorazole A(1) and C(1): asymmetric synthesis of a masked southern segment. Org. Lett., 2002, 4(19), 3239-3242.
[http://dx.doi.org/10.1021/ol026468j] [PMID: 12227758]
[245]
Crimmins, M.T.; Katz, J.D.; Washburn, D.G.; Allwein, S.P.; McAtee, L.F. Asymmetric total synthesis of spongistatins 1 and 2. J. Am. Chem. Soc., 2002, 124(20), 5661-5663.
[http://dx.doi.org/10.1021/ja0262683] [PMID: 12010038]
[246]
Hubbs, J.L.; Heathcock, C.H. A second-generation synthesis of the C1-C28 portion of the altohyrtins (spongistatins). J. Am. Chem. Soc., 2003, 125(42), 12836-12843.
[http://dx.doi.org/10.1021/ja030316h] [PMID: 14558832]
[247]
Kakeya, H.; Kageyama, S.; Nie, L.; Onose, R.; Okada, G.; Beppu, T.; Norbury, C.J.; Osada, H. Lucilactaene, a new cell cycle inhibitor in p53-transfected cancer cells, produced by a Fusarium sp. J. Antibiot. (Tokyo), 2001, 54(10), 850-854.
[http://dx.doi.org/10.7164/antibiotics.54.850] [PMID: 11776444]
[248]
Hayashi, Y.; Yamaguchi, J.; Shoji, M. The diastereoselective asymmetric total synthesis of NG-391, a neuronal cell-protecting molecule. Tetrahedron, 2002, 58(49), 9839-9846.
[http://dx.doi.org/10.1016/S0040-4020(02)01290-5]
[249]
Kuramochi, K.; Nagata, S.; Itaya, H.; Takao, K-i.; Kobayashi, S. Convergent total synthesis of epolactaene: application of bridgehead oxiranyl anion strategy. Tetrahedron Lett., 1999, 40(41), 7371-7374.
[http://dx.doi.org/10.1016/S0040-4039(99)01512-9]
[250]
Breitenstein, W.; Chexal, K.K.; Mohr, P.; Tamm, C.; Pseurotin, B.C. D, and E. Further new metabolites of Pseudeurotium ovalis Stolk. Helv. Chim. Acta, 1981, 64(2), 379-388.
[http://dx.doi.org/10.1002/hlca.19810640203]
[251]
Wenke, J.; Anke, H.; Sterner, O. Pseurotin A and 8-O-demethylpseurotin Afrom Aspergillus fumigatus and their inhibitory activities on chitin synthase Bioscie. biotech. biochem., 1993, 57(6), 961-964.
[252]
Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada, H. Azaspirene: a novel angiogenesis inhibitor containing a 1-oxa-7-azaspiro[4.4]non-2-ene-4,6-dione skeleton produced by the fungus Neosartorya sp. Org. Lett., 2002, 4(17), 2845-2848.
[http://dx.doi.org/10.1021/ol020104+] [PMID: 12182570]
[253]
Hayashi, Y.; Shoji, M.; Yamaguchi, S.; Mukaiyama, T.; Yamaguchi, J.; Kakeya, H.; Osada, H. Asymmetric total synthesis of pseurotin A. Org. Lett., 2003, 5(13), 2287-2290.
[http://dx.doi.org/10.1021/ol034630s] [PMID: 12816430]
[254]
Ando, O.; Satake, H.; Nakajima, M.; Sato, A.; Nakamura, T.; Kinoshita, T.; Furuya, K.; Haneishi, T. Synerazol, a new antifungal antibiotic. J. Antibiot. (Tokyo), 1991, 44(4), 382-389.
[http://dx.doi.org/10.7164/antibiotics.44.382] [PMID: 2032946]
[255]
Hayashi, Y.; Shoji, M.; Mukaiyama, T.; Gotoh, H.; Yamaguchi, S.; Nakata, M.; Kakeya, H.; Osada, H. First asymmetric total synthesis of synerazol, an antifungal antibiotic, and determination of its absolute stereochemistry. J. Org. Chem., 2005, 70(14), 5643-5654.
[http://dx.doi.org/10.1021/jo050664x] [PMID: 15989349]
[256]
Yu, Z.; Vodanovic-Jankovic, S.; Ledeboer, N.; Huang, S-X.; Rajski, S.R.; Kron, M.; Shen, B. Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. Org. Lett., 2011, 13(8), 2034-2037.
[http://dx.doi.org/10.1021/ol200420u] [PMID: 21405052]
[257]
Shimshock, S.J.; Waltermire, R.E.; DeShong, P. A total synthesis of (.+-.)-tirandamycin B. J. Am. Chem. Soc., 1991, 113(23), 8791-8796.
[http://dx.doi.org/10.1021/ja00023a029]
[258]
Takahashi, K.; Harada, R.; Hoshino, Y.; Kusakabe, T.; Hatakeyama, S.; Kato, K. Formal synthesis of tirandamycin B. Tetrahedron, 2017, 73(25), 3548-3553.
[http://dx.doi.org/10.1016/j.tet.2017.05.042]
[259]
Li, J.; Liu, S.; Niu, S.; Zhuang, W.; Che, Y. Pyrrolidinones from the ascomycete fungus Albonectria rigidiuscula. J. Nat. Prod., 2009, 72(12), 2184-2187.
[http://dx.doi.org/10.1021/np900619z] [PMID: 19919065]
[260]
Chen, G.Y.; Huang, H.; Ye, J.L.; Wang, A.E.; Huang, H.Y.; Zhang, H.K.; Huang, P.Q. Enantioselective syntheses of rigidiusculamides A and B: revision of the relative stereochemistry of rigidiusculamide A. Chem. Asian J., 2012, 7(3), 504-518.
[http://dx.doi.org/10.1002/asia.201100809] [PMID: 22315233]
[261]
Mitsuhashi, S.; Shindo, C.; Shigetomi, K.; Miyamoto, T.; Ubukata, M. (+)-Epogymnolactam, a novel autophagy inducer from mycelial culture of Gymnopus sp. Phytochemistry, 2015, 114, 163-167.
[http://dx.doi.org/10.1016/j.phytochem.2014.08.012] [PMID: 25242622]
[262]
Cuervo, A. M. Autophagy: in sickness and in health Trend. cell. bio., 2004, 14(2), 70-77.
[263]
Rubinsztein, D. C.; Codogno, P.; Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases Nat. rev. Drug. dis., 2012, 11(9), 709-730.
[http://dx.doi.org/10.1038/nrd3802]
[264]
Okado, Y.; Shigetomi, K.; Mitsuhashi, S.; Ubukata, M. First total synthesis of (+)-epogymnolactam, a novel autophagy inducer. J. Antibiot. (Tokyo), 2015, 68(12), 721-724.
[http://dx.doi.org/10.1038/ja.2015.63] [PMID: 26014720]
[265]
Carlson, J.C.; Li, S.; Burr, D.A.; Sherman, D.H. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J. Nat. Prod., 2009, 72(11), 2076-2079.
[http://dx.doi.org/10.1021/np9005597] [PMID: 19883065]
[266]
Brill, G.M.; McAlpine, J.B.; Whittern, D. Tirandalydigin, a novel tetramic acid of the tirandamycin-streptolydigin type. II. Isolation and structural characterization. J. Antibiot. (Tokyo), 1988, 41(1), 36-44.
[http://dx.doi.org/10.7164/antibiotics.41.36] [PMID: 3346191]
[267]
Olano, C.; Gómez, C.; Pérez, M.; Palomino, M.; Pineda-Lucena, A.; Carbajo, R.J.; Braña, A.F.; Méndez, C.; Salas, J.A. Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem. Biol., 2009, 16(10), 1031-1044.
[http://dx.doi.org/10.1016/j.chembiol.2009.09.015] [PMID: 19875077]
[268]
Royles, B.J. Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem. Rev., 1995, 95(6), 1981-2001.
[http://dx.doi.org/10.1021/cr00038a009]
[269]
Reusser, F. Tirandamycin, an inhibitor of bacterial ribonucleic acid polymerase. Antimicrob. Agents Chemother., 1976, 10(4), 618-622.
[http://dx.doi.org/10.1128/AAC.10.4.618]
[270]
Yoshimura, H.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. Unified synthesis of tirandamycins and streptolydigins. Chem. Commun. (Camb.), 2015, 51(95), 17004-17007.
[http://dx.doi.org/10.1039/C5CC07749D] [PMID: 26448062]
[271]
Shindo, K.; Kamishohara, M.; Odagawa, A.; Matsuoka, M.; Kawai, H. Vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic. J. Antibiot. (Tokyo), 1993, 46(7), 1076-1081.
[http://dx.doi.org/10.7164/antibiotics.46.1076] [PMID: 8360102]
[272]
Matsushima, Y.; Itoh, H.; Nakayama, T.; Horiuchi, S.; Eguchi, T.; Kakinuma, K. K. Enantioselective total synthesis of vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic J. Chem. Soc. Perkin Trans, 2002, (7), 949-958.
[273]
Duncan, S.J.; Cooper, M.A.; Williams, D.H. Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem. Commun. (Camb.), 2003, (3), 316-317.
[http://dx.doi.org/10.1039/b211889k] [PMID: 12613590]
[274]
Qiu, H-B.; Chen, X-Y.; Li, Q.; Qian, W-J.; Yu, S-M.; Tang, G-L.; Yao, Z-J. Unified flexible total synthesis of chlorofusin and artificial Click mimics as antagonists against p53–HDM2 interactions. Tetrahedron Lett., 2014, 55(44), 6055-6059.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.028]
[275]
Gonzalez, N.; Rodriguez, J.; Jiménez, C.; Didemniserinolipids, A.C. Unprecedented Serinolipids from the Tunicate Didemnum sp. J. Org. Chem., 1999, 64(15), 5705-5707.
[http://dx.doi.org/10.1021/jo9903914] [PMID: 11674645]
[276]
Ren, J.; Tong, R. Asymmetric total synthesis of (+)-didemniserinolipid B via Achmatowicz rearrangement/bicycloketalization. J. Org. Chem., 2014, 79(15), 6987-6995.
[http://dx.doi.org/10.1021/jo501142q] [PMID: 25020037]
[277]
Armstrong, A.; Blench, T.J. Recent synthetic studies on the zaragozic acids (squalestatins). Tetrahedron, 2002, 46(58), 9321-9349.
[http://dx.doi.org/10.1016/S0040-4020(02)00993-6]
[278]
Fegheh-Hassanpour, Y.; Ebrahim, F.; Arif, T.; Sintim, H.O.; Claridge, T.D.W.; Amin, N.T.; Hodgson, D.M. On the ozonolysis of unsaturated tosylhydrazones as a direct approach to diazocarbonyl compounds. Org. Biomol. Chem., 2018, 16(16), 2876-2884.
[http://dx.doi.org/10.1039/C8OB00435H] [PMID: 29611856]
[279]
Hodgson, D.M.; Villalonga-Barber, C.; Goodman, J.M.; Pellegrinet, S.C. Synthetic and computational studies on the tricarboxylate core of 6,7-dideoxysqualestatin H5 involving a carbonyl ylide cycloaddition-rearrangement. Org. Biomol. Chem., 2010, 8(17), 3975-3984.
[http://dx.doi.org/10.1039/c004496b] [PMID: 20601984]
[280]
Sakai, R.; Swanson, G.T.; Shimamoto, K.; Green, T.; Contractor, A.; Ghetti, A.; Tamura-Horikawa, Y.; Oiwa, C.; Kamiya, H. Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea. J. Pharmacol. Exp. Ther., 2001, 296(2), 650-658.
[PMID: 11160654]
[281]
Sakai, R.; Koike, T.; Sasaki, M.; Shimamoto, K.; Oiwa, C.; Yano, A.; Suzuki, K.; Tachibana, K.; Kamiya, H. Isolation, structure determination, and synthesis of neodysiherbaine A, a new excitatory amino acid from a marine sponge. Org. Lett., 2001, 3(10), 1479-1482.
[http://dx.doi.org/10.1021/ol015798l] [PMID: 11388846]
[282]
Nicolaou, K.C.; Dai, W.M.; Guy, R.K. Chemistry and biology of taxol. Angew. Chem. Int. Ed. Engl., 1994, 33(1), 15-44.
[http://dx.doi.org/10.1002/anie.199400151]
[283]
D’ambrosio, M.; Guerriero, A.; Pietra, F. Isolation from the Mediterranean stoloniferan coral Sarcodictyon roseum of sarcodictyin C, D, E, and F, novel diterpenoidic alcohols esterified by (E)-or (Z)-N (1)-methylurocanic acid. Failure of the carbon-skeleton type as a classification criterion. Helv. Chim. Acta, 1988, 71(5), 964-976.
[http://dx.doi.org/10.1002/hlca.19880710504]
[284]
Lindel, T.; Jensen, P.R.; Fenical, W.; Long, B.H.; Casazza, A.M.; Carboni, J.; Fairchild, C.R. Eleutherobin, a new cytotoxin that mimics paclitaxel (Taxol) by stabilizing microtubules. J. Am. Chem. Soc., 1997, 119(37), 8744-8745.
[http://dx.doi.org/10.1021/ja9717828]
[285]
Ciomei, M.; Albanese, C.; Pastori, W.; Grandi, M.; Pietra, F. Abstract 30 Proc. Amer. Ass. Canc. Res, 1997, 38(5)
[286]
Ceccarelli, S.M.; Piarulli, U.; Telser, J.; Gennari, C. A carbonylative cross-coupling strategy to the total synthesis of the sarcodictyins: preliminary studies and synthesis of a cyclization precursor. Tetrahedron Lett., 2001, 42(42), 7421-7425.
[http://dx.doi.org/10.1016/S0040-4039(01)01608-2]
[287]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; McPhail, A.T.; Onan, K.D. Plant antitumour agents: isolation and structure of samaderine A (X-ray analysis) and a new antileukaemic quassinoid samaderine e from Samadera indica. J. Chem. Soc. Chem. Commun., 1977, (9), 295-296.
[http://dx.doi.org/10.1039/c39770000295]
[288]
Aono, H.; Koike, K.; Kaneko, J.; Ohmoto, T. Alkaloids and quassinoids from Ailanthus malabarica. Phytochemistry, 1994, 37(2), 579-584.
[http://dx.doi.org/10.1016/0031-9422(94)85104-2]
[289]
Kitagawa, I.; Mahmud, T.; Yokota, K.; Nakagawa, S.; Mayumi, T.; Kobayashi, M.; Shibuya, H. Indonesian medicinal plants. XVII. Characterization of quassinoids from the stems of Quassia indica. Chem. Pharm. Bull. (Tokyo), 1996, 44(11), 2009-2014.
[http://dx.doi.org/10.1248/cpb.44.2009] [PMID: 8945767]
[290]
Shing, T.K.; Yeung, Y.Y. Synthetic studies towards pentacyclic quassinoids: total synthesis of unnatural (-)-14-epi-samaderine E and natural (-)-samaderine Y from (S)-(+)-carvone. Chemistry, 2006, 12(32), 8367-8377.
[http://dx.doi.org/10.1002/chem.200600669] [PMID: 16927353]
[291]
Pulici, M.; Sugawara, F.; Koshino, H.; Uzawa, J.; Yoshida, S.; Lobkovsky, E.; Clardy, J. Pestalotiopsins A and B: new caryophyllenes from an endophytic fungus of Taxus brevifolia. J. Org. Chem., 1996, 61(6), 2122-2124.
[http://dx.doi.org/10.1021/jo951736v]
[292]
Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Morita, U.; Kawasaki, S.; Tadano, K. Total synthesis of (-)-pestalotiopsin A. Angew. Chem. Int. Ed. Engl., 2008, 47(18), 3426-3429.
[http://dx.doi.org/10.1002/anie.200800253] [PMID: 18366053]
[293]
Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Saegusa, H.; Uchida, M.; Samejima, S.; Tadano, K. Total syntheses of (+)- and (-)-pestalotiopsin A. J. Org. Chem., 2009, 74(17), 6452-6461.
[http://dx.doi.org/10.1021/jo9012546] [PMID: 19658390]
[294]
Nakajima, H.; Hori, Y.; Terano, H.; Okuhara, M.; Manda, T.; Matsumoto, S.; Shimomura, K. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. (Tokyo), 1996, 49(12), 1204-1211.
[http://dx.doi.org/10.7164/antibiotics.49.1204] [PMID: 9031665]
[295]
Nakajima, H.; Takase, S.; Terano, H.; Tanaka, H. New antitumor substances, FR901463, FR901464 and FR901465. III. Structures of FR901463, FR901464 and FR901465. J. Antibiot. (Tokyo), 1997, 50(1), 96-99.
[http://dx.doi.org/10.7164/antibiotics.50.96] [PMID: 9066774]
[296]
Motoyoshi, H.; Horigome, M.; Watanabe, H.; Kitahara, T. Total synthesis of FR901464: second generation. Tetrahedron, 2006, 62(7), 1378-1389.
[http://dx.doi.org/10.1016/j.tet.2005.11.031]
[297]
Pine, S.H.; Zahler, R.; Evans, D.; Grubbs, R. Titanium-mediated methylene-transfer reactions. Direct conversion of esters into vinyl ethers. J. Am. Chem. Soc., 1980, 102(9), 3270-3272.
[http://dx.doi.org/10.1021/ja00529a076]
[298]
Hale, K.J.; Hummersone, M.G.; Manaviazar, S.; Frigerio, M. The chemistry and biology of the bryostatin antitumour macrolides. Nat. Prod. Rep., 2002, 19(4), 413-453.
[http://dx.doi.org/10.1039/b009211h] [PMID: 12195811]
[299]
Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod., 2004, 67(8), 1216-1238.
[http://dx.doi.org/10.1021/np040031y] [PMID: 15332835]
[300]
Hongpaisan, J.; Alkon, D.L. A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19571-19576.
[http://dx.doi.org/10.1073/pnas.0709311104] [PMID: 18073185]
[301]
Trost, B.M.; Dong, G. Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature, 2008, 456(7221), 485-488.
[http://dx.doi.org/10.1038/nature07543] [PMID: 19037312]
[302]
Corey, E.J.; Helal, C.J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. Engl., 1998, 37(15), 1986-2012.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980817)37:15<1986:AID-ANIE1986>3.0.CO;2-Z] [PMID: 29711061]
[303]
Roth, G.J.; Liepold, B.; Mueller, S.G.; Bestmann, H.J. Further improvements of the synthesis of alkynes from aldehydes. Synthesis, 2004, 2004(01), 59-62.
[http://dx.doi.org/10.1055/s-2003-44346]
[304]
Connor, D.T.; Greenough, R.C.; von Strandtmann, M. W-7783, a unique antifungal antibiotic. J. Org. Chem., 1977, 42(23), 3664-3669.
[http://dx.doi.org/10.1021/jo00443a006] [PMID: 410912]
[305]
Ringel, S.M.; Greenough, R.C.; Roemer, S.; Connor, D.; Gutt, A.L.; Blair, B.; Kanter, G.; von Strandtmann, M. Ambruticin (W7783), a new antifungal antibiotic. J. Antibiot. (Tokyo), 1977, 30(5), 371-375.
[http://dx.doi.org/10.7164/antibiotics.30.371] [PMID: 407203]
[306]
Wesolowski, J.; Hassan, R.Y.; Reinhardt, K.; Hodde, S.; Bilitewski, U. Antifungal compounds redirect metabolic pathways in yeasts: metabolites as indicators of modes of action. J. Appl. Microbiol., 2010, 108(2), 462-471.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04443.x] [PMID: 19645763]
[307]
Hanessian, S.; Focken, T.; Mi, X.; Oza, R.; Chen, B.; Ritson, D.; Beaudegnies, R. Total synthesis of (+)-ambruticin S: probing the pharmacophoric subunit. J. Org. Chem., 2010, 75(16), 5601-5618.
[http://dx.doi.org/10.1021/jo100956v] [PMID: 20704433]
[308]
Iwami, M.; Kiyoto, S.; Terano, H.; Kohsaka, M.; Aoki, H.; Imanaka, H. A new antitumor antibiotic, FR-900482. I. Taxonomic studies on the producing strain: a new species of the genus Streptomyces. J. Antibiot. (Tokyo), 1987, 40(5), 589-593.
[http://dx.doi.org/10.7164/antibiotics.40.589] [PMID: 3610817]
[309]
Fukuyama, T.; Goto, S. Synthetic approaches toward FR-900482. I. Stereoselective synthesis of a pentacyclic model compound. Tetrahedron Lett., 1989, 30(47), 6491-6494.
[http://dx.doi.org/10.1016/S0040-4039(01)89002-X]
[310]
Judd, T.C.; Williams, R.M. Concise enantioselective synthesis of (+)-FR66979 and (+)-FR900482: dimethyldioxirane-mediated construction of the hydroxylamine hemiketal. Angew. Chem. Int. Ed. Engl., 2002, 41(24), 4683-4685.
[http://dx.doi.org/10.1002/anie.200290015] [PMID: 12481325]
[311]
Scheidt, K.A.; Chen, H.; Follows, B.C.; Chemler, S.R.; Coffey, D.S.; Roush, W.R. Tris (dimethylamino) sulfonium difluorotrimethylsilicate, a mild reagent for the removal of silicon protecting groups. J. Org. Chem., 1998, 63(19), 6436-6437.
[http://dx.doi.org/10.1021/jo981215i]
[312]
Chen, C-C.; Huang, Y-L.; Ou, J-C.; Lin, C-F.; Pan, T-M. Three new prenylflavones from Artocarpus altilis. J. Nat. Prod., 1993, 56(9), 1594-1597.
[http://dx.doi.org/10.1021/np50099a021]
[313]
Hakim, E.H. Asnizar; Yurnawilis; Aimi, N.; Kitajima, M.; Takayama, H. Artoindonesianin P, A new prenylated flavone with cytotoxic activity from Artocarpus lanceifolius. Fitoterapia, 2002, 73(8), 668-673.
[http://dx.doi.org/10.1016/S0367-326X(02)00226-5] [PMID: 12490227]
[314]
Wang, Y-H.; Hou, A-J.; Chen, L.; Chen, D-F.; Sun, H-D.; Zhao, Q-S.; Bastow, K.F.; Nakanish, Y.; Wang, X-H.; Lee, K-H. New isoprenylated flavones, artochamins A--E, and cytotoxic principles from Artocarpus chama. J. Nat. Prod., 2004, 67(5), 757-761.
[http://dx.doi.org/10.1021/np030467y] [PMID: 15165133]
[315]
Wang, Y.H.; Hou, A.J.; Chen, D.F.; Weiller, M.; Wendel, A.; Staples, R.J. Prenylated stilbenes and their novel biogenetic derivatives from Artocarpus chama. Eur. J. Org. Chem., 2006, 2006(15), 3457-3463.
[http://dx.doi.org/10.1002/ejoc.200600278]
[316]
Nicolaou, K.C.; Lister, T.; Denton, R.M.; Gelin, C.F. Total synthesis of atrochamins F, H, I, and J through cascade reactions. Tetrahedron, 2008, 64(21), 4736-4757.
[http://dx.doi.org/10.1016/j.tet.2008.02.108] [PMID: 19461992]
[317]
Sakamoto, S.; Sakazaki, H.; Hagiwara, K.; Kamada, K.; Ishii, K.; Noda, T.; Inoue, M.; Hirama, M. A formal total synthesis of (+)-pinnatoxin A. Angew. Chem. Int. Ed. Engl., 2004, 43(47), 6505-6510.
[http://dx.doi.org/10.1002/anie.200461802] [PMID: 15578774]
[318]
Uemura, D.; Chou, T.; Haino, T.; Nagatsu, A.; Fukuzawa, S.; Zheng, S-z.; Chen, H-s.; Pinnatoxin, A. A toxic amphoteric macrocycle from the Okinawan bivalve Pinna muricata. J. Am. Chem. Soc., 1995, 117(3), 1155-1156.
[http://dx.doi.org/10.1021/ja00108a043]
[319]
Stivala, C.E.; Zakarian, A. Total synthesis of (+)-pinnatoxin A. J. Am. Chem. Soc., 2008, 130(12), 3774-3776.
[http://dx.doi.org/10.1021/ja800435j] [PMID: 18311987]
[320]
Lu, C-D.; Zakarian, A. Studies toward the synthesis of pinnatoxins: the B,C,D-dispiroketal fragment. Org. Lett., 2007, 9(16), 3161-3163.
[http://dx.doi.org/10.1021/ol071266e] [PMID: 17628070]
[321]
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1(6), 953-956.
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
[322]
Garber, S.B.; Kingsbury, J.S.; Gray, B.L.; Hoveyda, A.H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc., 2000, 122(34), 8168-8179.
[http://dx.doi.org/10.1021/ja001179g]
[323]
Fukami, H.; Nakajima, M. Rotenone and the rotenoids.Naturally occurring insecticides; Jacobson, M; Crosby, D.G., Ed.; Dekker: New York, NY, 1971, pp. 71-97.
[324]
Botta, B.; Menendez, P.; Zappia, G.; de Lima, R.A.; Torge, R.; Monachea, G.D. Prenylated isoflavonoids: Botanical distribution, structures, biological activities and biotechnological studies. An update (1995-2006). Curr. Med. Chem., 2009, 16(26), 3414-3468.
[http://dx.doi.org/10.2174/092986709789057662] [PMID: 19548871]
[325]
Gerhäuser, C.; Lee, S.K.; Kosmeder, J.W.; Moriarty, R.M.; Hamel, E.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Regulation of ornithine decarboxylase induction by deguelin, a natural product cancer chemopreventive agent. Cancer Res., 1997, 57(16), 3429-3435.
[PMID: 9270009]
[326]
Lee, S.; An, H.; Chang, D-J.; Jang, J.; Kim, K.; Sim, J.; Lee, J.; Suh, Y-G. Total synthesis of (-)-deguelin via an iterative pyran-ring formation strategy. Chem. Commun. (Camb.), 2015, 51(43), 9026-9029.
[http://dx.doi.org/10.1039/C5CC02215K] [PMID: 25940751]
[327]
Huang, X-H.; van Soest, R.; Roberge, M.; Andersen, R.J. Spiculoic acids A and B, new polyketides isolated from the Caribbean marine sponge Plakortis angulospiculatus. Org. Lett., 2004, 6(1), 75-78.
[http://dx.doi.org/10.1021/ol0361047] [PMID: 14703354]
[328]
Matsumura, D.; Toda, T.; Hayamizu, T.; Sawamura, K.; Takao, K-i.; Tadano, K-i. Total synthesis of (+)-spiculoic acid A. Tetrahedron Lett., 2009, 50(26), 3356-3358.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.101]
[329]
Gao, Y.G.; Song, Y.M.; Yang, Y.Y.; Liu, W.F.; Tang, J.X. [Pharmacology of tanshinone (author’s transl)] Yao Xue Xue Bao, 1979, 14(2), 75-82.
[PMID: 506713]
[330]
Houlihan, C.M.; Ho, C.T.; Chang, S.S. The structure of rosmariquinone—A new antioxidant isolated from Rosmarinus officinalis L. J. Am. Oil Chem. Soc., 1985, 62(1), 96-98.
[http://dx.doi.org/10.1007/BF02541500]
[331]
Wu, W.; Chang, W.; Lee, A. Lin., HC; King, M. L. J. Med. Sci. (Dacca), 1985, 6, 159.
[332]
Onitsuka, M.; Fujiu, M.; Shinma, N.; Maruyama, H.B. New platelet aggregation inhibitors from Tan-Shen; radix of Salvia miltiorrhiza Bunge. Chem. Pharm. Bull. (Tokyo), 1983, 31(5), 1670-1675.
[http://dx.doi.org/10.1248/cpb.31.1670] [PMID: 6616715]
[333]
Huang, W.G.; Li, Y.F.; Lu, W.; Aisa, H.A. Total synthesis of miltirone. Chem. Nat. Compd., 2006, 42(6), 665-667.
[http://dx.doi.org/10.1007/s10600-006-0247-7]
[334]
Tanaka, M.; Nara, F.; Suzuki-Konagai, K.; Hosoya, T.; Ogita, T. Structural elucidation of scyphostatin, an inhibitor of membrane-bound neutral sphingomyelinase. J. Am. Chem. Soc., 1997, 119(33), 7871-7872.
[http://dx.doi.org/10.1021/ja9713385]
[335]
Inoue, M.; Yokota, W.; Katoh, T. Enantioselective total synthesis of (+)-scyphostatin, a potent and specific inhibitor of neutral sphingomyelinase. Synthesis, 2007, 2007(04), 622-637.
[http://dx.doi.org/10.1055/s-2007-965893]
[336]
Fukuyama, Y.; Kuwayama, A.; Minami, H. Garsubellin A, a novel polyprenylated phloroglucin derivative, increasing choline acetyltransferase (ChAT) activity in postnatal rat septal neuron cultures. Chem. Pharm. Bull. (Tokyo), 1997, 45(5), 947-949.
[http://dx.doi.org/10.1248/cpb.45.947] [PMID: 9178529]
[337]
Uwamori, M.; Nakada, M. Stereoselective total synthesis of garsubellin A. J. Antibiot. (Tokyo), 2013, 66(3), 141-145.
[http://dx.doi.org/10.1038/ja.2012.125] [PMID: 23385132]
[338]
Krasovskiy, A.; Kopp, F.; Knochel, P. Soluble lanthanide salts (LnCl3.2LiCl) for the improved addition of organomagnesium reagents to carbonyl compounds. Angew. Chem. Int. Ed. Engl., 2006, 45(3), 497-500.
[http://dx.doi.org/10.1002/anie.200502485] [PMID: 16397856]
[339]
Chatterjee, A.K.; Sanders, D.P.; Grubbs, R.H. Synthesis of symmetrical trisubstituted olefins by cross metathesis. Org. Lett., 2002, 4(11), 1939-1942.
[http://dx.doi.org/10.1021/ol0259793] [PMID: 12027652]
[340]
Bystrov, N.; Chernov, B.; Dobrynin, V.; Kolosov, M. The structure of hyperforin. Tetrahedron Lett., 1975, 16(32), 2791-2794.
[http://dx.doi.org/10.1016/S0040-4039(00)75241-5] [PMID: 1212917]
[341]
Schempp, C.M.; Pelz, K.; Wittmer, A.; Schöpf, E.; Simon, J.C. Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria. Lancet, 1999, 353(9170), 2129.
[http://dx.doi.org/10.1016/S0140-6736(99)00214-7] [PMID: 10382704]
[342]
Watkins, R.E.; Maglich, J.M.; Moore, L.B.; Wisely, G.B.; Noble, S.M.; Davis-Searles, P.R.; Lambert, M.H.; Kliewer, S.A.; Redinbo, M.R. 2.1 A crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry, 2003, 42(6), 1430-1438.
[http://dx.doi.org/10.1021/bi0268753] [PMID: 12578355]
[343]
Schempp, C.M.; Kirkin, V.; Simon-Haarhaus, B.; Kersten, A.; Kiss, J.; Termeer, C.C.; Gilb, B.; Kaufmann, T.; Borner, C.; Sleeman, J.P.; Simon, J.C. Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John’s wort that acts by induction of apoptosis. Oncogene, 2002, 21(8), 1242-1250.
[http://dx.doi.org/10.1038/sj.onc.1205190] [PMID: 11850844]
[344]
Uwamori, M.; Nakada, M. Stereoselective total synthesis of (±)-hyperforin via intramolecular cyclopropanation. Tetrahedron Lett., 2013, 54(15), 2022-2025.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.021]
[345]
Yu, J-Q.; Corey, E.J. A mild, catalytic, and highly selective method for the oxidation of α,β-enones to 1,4-enediones. J. Am. Chem. Soc., 2003, 125(11), 3232-3233.
[http://dx.doi.org/10.1021/ja0340735] [PMID: 12630876]
[346]
Nicolaou, K.; Pfefferkorn, J.; Kim, S.; Wei, H. Synthesis of the fully functionalized bicyclic core of garsubellin A. J. Am. Chem. Soc., 1999, 121(19), 4724-4725.
[http://dx.doi.org/10.1021/ja9905445]
[347]
Tsukano, C.; Siegel, D.R.; Danishefsky, S.J. Differentiation of nonconventional “carbanions”-the total synthesis of nemorosone and clusianone. Angew. Chem. Int. Ed. Engl., 2007, 46(46), 8840-8844.
[http://dx.doi.org/10.1002/anie.200703886] [PMID: 17935090]
[348]
Rao, B.S.; Simonsen, J.L. CCCXXXI.—The constituents of some Indian essential oils. Part XXV. 1-α-and 1-β-Curcumenes. J. Chem. Soc., 1928, 2496-2505.
[http://dx.doi.org/10.1039/JR9280002496]
[349]
Honwad, V.; Rao, A. Terpenoids—LXIX: Absolute configuration of (−) α-curcumene. Tetrahedron, 1965, 21(9), 2593-2604.
[http://dx.doi.org/10.1016/S0040-4020(01)93915-8]
[350]
Fujiwara, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase inhibitory activity of volatile oil from Peltophorum dasyrachis Kurz ex Bakar (yellow batai) and Bisabolane-type sesquiterpenoids. J. Agric. Food Chem., 2010, 58(5), 2824-2829.
[http://dx.doi.org/10.1021/jf9042387] [PMID: 20146521]
[351]
McBrien, H.L.; Millar, J.G.; Rice, R.E.; McElfresh, J.S.; Cullen, E.; Zalom, F.G. Sex attractant pheromone of the red-shouldered stink bug Thyanta pallidovirens: a pheromone blend with multiple redundant components. J. Chem. Ecol., 2002, 28(9), 1797-1818.
[http://dx.doi.org/10.1023/A:1020513218454] [PMID: 12449507]
[352]
Wu, L.; Zhong, J-C.; Liu, S-K.; Liu, F-P.; Gao, Z-D.; Wang, M.; Bian, Q-H. Asymmetric synthesis of (R)-ar-curcumene,(R)-4, 7-dimethyl-l-tetralone, and their enantiomers via cobalt-catalyzed asymmetric Kumada cross-coupling. Tetrahedron Asymmetry, 2016, 27(1), 78-83.
[http://dx.doi.org/10.1016/j.tetasy.2015.11.009]
[353]
Trost, B.M.; Schroeder, G.M. Palladium-catalyzed asymmetric allylic alkylation of ketone enolates. Chemistry, 2004, 11(1), 174-184.
[http://dx.doi.org/10.1002/chem.200400666] [PMID: 15515094]
[354]
Lee, T.; Jones, J.B. Probing the abilities of synthetically useful serine proteases to discriminate between the configurations of remote stereocenters using chiral aldehyde inhibitors. J. Am. Chem. Soc., 1996, 118(3), 502-508.
[http://dx.doi.org/10.1021/ja952835t]
[355]
Berrue, F.; Kerr, R.G. Diterpenes from gorgonian corals. Nat. Prod. Rep., 2009, 26(5), 681-710.
[http://dx.doi.org/10.1039/b821918b] [PMID: 19387501]
[356]
Prestwich, G.D.; Wiemer, D.F.; Meinwald, J.; Clardy, J. Cubitene: an irregular twelve-membered-ring diterpene from a termite soldier. J. Am. Chem. Soc., 1978, 100(8), 2560-2561.
[http://dx.doi.org/10.1021/ja00476a056]
[357]
Look, S.A.; Fenical, W.; Zheng, Q.T.; Clardy, J. Calyculones, new cubitane diterpenoids from the Caribbean gorgonian octocoral Eunicea calyculata. J. Org. Chem., 1984, 49(8), 1417-1423.
[http://dx.doi.org/10.1021/jo00182a019]
[358]
Balasubramanyam, P.; Rodríguez, A.D. Synthesis and biological analysis of truncated calyculone H. Tetrahedron, 2017, 73(9), 1283-1292.
[http://dx.doi.org/10.1016/j.tet.2017.01.031] [PMID: 28943666]
[359]
Jackson, M.; Karwowski, J.P.; Theriault, R.J.; Rasmussen, R.R.; Hensey, D.M.; Humphrey, P.E.; Swanson, S.J.; Barlow, G.J.; Premachandran, U.; McAlpine, J.B. Macquarimicins, microbial metabolites from Micromonospora. I. Discovery, taxonomy, fermentation and biological properties. J. Antibiot. (Tokyo), 1995, 48(6), 462-466.
[http://dx.doi.org/10.7164/antibiotics.48.462] [PMID: 7622430]
[360]
Tanaka, M.; Nara, F.; Yamasato, Y.; Masuda-Inoue, S.; Doi-Yoshioka, H.; Kumakura, S.; Enokita, R.; Ogita, T. Macquarimicin A inhibits membrane-bound neutral sphingomyelinase from rat brain. J. Antibiot. (Tokyo), 1999, 52(7), 670-673.
[http://dx.doi.org/10.7164/antibiotics.52.670] [PMID: 10513848]
[361]
Munakata, R.; Ueki, T.; Katakai, H.; Takao, K.I.; Tadano, K.I. Synthetic study of macquarimicins: Highly stereoselective construction of the AB-ring system. Org. Lett., 2001, 3(19), 3029-3032.
[http://dx.doi.org/10.1021/ol016449u] [PMID: 11554835]
[362]
Kirst, H.A.; Mynderse, J.S.; Martin, J.W.; Baker, P.J.; Paschal, J.W.; Rios Steiner, J.L.; Lobkovsky, E.; Clardy, J. Structure of the spiroketal-macrolide ossamycin. J. Antibiot. (Tokyo), 1996, 49(2), 162-167.
[http://dx.doi.org/10.7164/antibiotics.49.162] [PMID: 8621357]
[363]
Kobayashi, K.; Nishino, C.; Ohya, J.; Sato, S.; Mikawa, T.; Shiobara, Y.; Kodama, M.; Nishimoto, N.; Oligomycin, E. A new antitumor antibiotic produced by Streptomyces sp. MCI-2225. J. Antibiot. (Tokyo), 1987, 40(7), 1053-1057.
[http://dx.doi.org/10.7164/antibiotics.40.1053] [PMID: 3624067]
[364]
Kirst, H.A.; Larsen, S.H.; Paschal, J.W.; Occolowitz, J.L.; Creemer, L.C.; Steiner, J.L.R.; Lobkovsky, E.; Clardy, J. Structure of the new spiroketal-macrolide A82548A. J. Antibiot. (Tokyo), 1995, 48(9), 990-996.
[http://dx.doi.org/10.7164/antibiotics.48.990] [PMID: 7592067]
[365]
Wuthier, D.; Keller‐Schierlein, W.; Wahl, B. Stoffwechselprodukte von Mikroorganismen 227. Mitteilung. Isolierung und Strukturaufklärung von Rutamycin B. Helv. Chim. Acta, 1984, 67(5), 1208-1216.
[http://dx.doi.org/10.1002/hlca.19840670506]
[366]
Salomon, A.R.; Voehringer, D.W.; Herzenberg, L.A.; Khosla, C. Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPase. Chem. Biol., 2001, 8(1), 71-80.
[http://dx.doi.org/10.1016/S1074-5521(00)00057-0] [PMID: 11182320]
[367]
Yadav, J.; Rahman, M.A.; Reddy, N.M.; Prasad, A. Synthesis of spiroketal fragment of ossamycin via Prins cyclization. Tetrahedron Lett., 2015, 56(2), 365-367.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.097]
[368]
Perron, F.; Albizati, K.F. Chemistry of spiroketals. Chem. Rev., 1989, 89(7), 1617-1661.
[http://dx.doi.org/10.1021/cr00097a015]
[369]
Osada, H.; Koshino, H.; Isono, K.; Takahashi, H.; Kawanishi, G. Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor. J. Antibiot. (Tokyo), 1991, 44(2), 259-261.
[http://dx.doi.org/10.7164/antibiotics.44.259] [PMID: 2010365]
[370]
Takahashi, H.; Yamashita, Y.; Takaoka, H.; Nakamura, J.; Yoshihama, M.; Osada, H. Inhibitory action of reveromycin A on TGF-alpha-dependent growth of ovarian carcinoma BG-1 in vitro and in vivo. Oncol. Res., 1997, 9(1), 7-11.
[PMID: 9112255]
[371]
Cuzzupe, A.N.; Hutton, C.A.; Lilly, M.J.; Mann, R.K.; McRae, K.J.; Zammit, S.C.; Rizzacasa, M.A. Total synthesis of the epidermal growth factor inhibitor (-)-reveromycin B. J. Org. Chem., 2001, 66(7), 2382-2393.
[http://dx.doi.org/10.1021/jo001646c] [PMID: 11281779]
[372]
Nakamura, S.; Inagaki, J.; Kudo, M.; Sugimoto, T.; Obara, K.; Nakajima, M.; Hashimoto, S. Studies directed toward the total synthesis of pinnatoxin A: synthesis of the 6, 5, 6-dispiroketal (BCD ring) system by double hemiketal formation/hetero-Michael addition strategy. Tetrahedron, 2002, 58(52), 10353-10374.
[http://dx.doi.org/10.1016/S0040-4020(02)01379-0]
[373]
Williams, D.E.; Lapawa, M.; Feng, X.; Tarling, T.; Roberge, M.; Andersen, R.J. Spirastrellolide A: revised structure, progress toward the relative configuration, and inhibition of protein phosphatase 2A. Org. Lett., 2004, 6(15), 2607-2610.
[http://dx.doi.org/10.1021/ol0490983] [PMID: 15255702]
[374]
Rajesh, A.; Sharma, G.V.; Damera, K. Toward the stereoselective synthesis of C1–C23 fragment of spirastrellolide B. Tetrahedron Lett., 2014, 55(30), 4067-4070.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.111]
[375]
Igarashi, Y.; Iida, T.; Yoshida, R.; Furumai, T. Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J. Antibiot. (Tokyo), 2002, 55(8), 764-767.
[http://dx.doi.org/10.7164/antibiotics.55.764] [PMID: 12374388]
[376]
Paterson, I.; Anderson, E.A.; Findlay, A.D.; Knappy, C.S. Total synthesis of pteridic acids A and B. Tetrahedron, 2008, 64(21), 4768-4777.
[http://dx.doi.org/10.1016/j.tet.2008.01.132]
[377]
Narahashi, Y.; Shibuya, K.; Yanagita, M. Studies on proteolytic enzymes (pronase) of Streptomyces griseus K-1. II. Separation of exo- and endopeptidases of pronase. J. Biochem., 1968, 64(4), 427-437.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a128914] [PMID: 5707831]
[378]
Osada, H. Development and application of bioprobes for Mammalian cell cycle analyses. Curr. Med. Chem., 2003, 10(9), 727-732.
[http://dx.doi.org/10.2174/0929867033457836] [PMID: 12678775]
[379]
Takahashi, H.; Osada, H.; Koshino, H.; Sasaki, M.; Onose, R.; Nakakoshi, M.; Yoshihama, M.; Isono, K. Reveromycins, new inhibitors of eukaryotic cell growth. II. Biological activities. J. Antibiot. (Tokyo), 1992, 45(9), 1414-1419.
[http://dx.doi.org/10.7164/antibiotics.45.1414] [PMID: 1429226]
[380]
Miyamoto, Y.; Machida, K.; Mizunuma, M.; Emoto, Y.; Sato, N.; Miyahara, K.; Hirata, D.; Usui, T.; Takahashi, H.; Osada, H.; Miyakawa, T. Identification of Saccharomyces cerevisiae isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. J. Biol. Chem., 2002, 277(32), 28810-28814.
[http://dx.doi.org/10.1074/jbc.M203827200] [PMID: 12050165]
[381]
El Sous, M.; Ganame, D.; Tregloan, P.; Rizzacasa, M.A. Total Synthesis of (-)-Reveromycin A via a Hetero-Diels-Alder Approach. Synthesis, 2010, 2010(23), 3954-3966.
[http://dx.doi.org/10.1055/s-0030-1258308]
[382]
Edmunds, A.; Trueb, W.; Oppolzer, W.; Cowley, P. Herboxidiene: determination of absolute configuration by degradation and synthetic studies. Tetrahedron, 1997, 53(8), 2785-2802.
[http://dx.doi.org/10.1016/S0040-4020(97)00021-5]
[383]
Sakai, Y.; Tsujita, T.; Akiyama, T.; Yoshida, T.; Mizukami, T.; Akinaga, S.; Horinouchi, S.; Yoshida, M.; Yoshida, T. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. II. The effects on cell cycle progression and gene expression. J. Antibiot. (Tokyo), 2002, 55(10), 863-872.
[http://dx.doi.org/10.7164/antibiotics.55.863] [PMID: 12523819]
[384]
Premraj, R.; McLeod, M.D.; Simpson, G.W. A total synthesis of herboxidiene methyl ester. Heterocycles, 2012, 85(12), 2949-2976.
[http://dx.doi.org/10.3987/COM-12-12597]
[385]
Wang, J.; Pearce, A.N.; Chan, S.T.; Taylor, R.B.; Page, M.J.; Valentin, A.; Bourguet-Kondracki, M-L.; Dalton, J.P.; Wiles, S.; Copp, B.R. Biologically active acetylenic amino alcohol and N-hydroxylated 1, 2, 3, 4-tetrahydro-β-carboline constituents of the New Zealand Ascidian Pseudodistoma opacum. J. Nat. Prod., 2016, 79(3), 607-610.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00770] [PMID: 26670413]
[386]
Nishimura, S.; Matsunaga, S.; Shibazaki, M.; Suzuki, K.; Harada, N.; Naoki, H.; Fusetani, N. Corticatic acids D and E, polyacetylenic geranylgeranyltransferase type I inhibitors, from the marine sponge Petrosia corticata. J. Nat. Prod., 2002, 65(9), 1353-1356.
[http://dx.doi.org/10.1021/np020080f] [PMID: 12350165]
[387]
Dumpala, M.; Theegala, S.; Palakodety, R.K. Total synthesis of distaminolyne A. Tetrahedron Lett., 2017, 58(13), 1273-1275.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.029]
[388]
Usuki, T.; Sugimura, T.; Komatsu, A.; Koseki, Y. Biomimetic Chichibabin pyridine synthesis of the COPD biomarkers and elastin cross-linkers isodesmosine and desmosine. Org. Lett., 2014, 16(6), 1672-1675.
[http://dx.doi.org/10.1021/ol500333t] [PMID: 24597689]
[389]
Kubler, K. Beiträge zur Chemie der Kondurangorinde. Arch. Pharm. (Berl.), 1908, 246(6‐9), 620-660.
[http://dx.doi.org/10.1002/ardp.19082460628]
[390]
Paul, B.J.; Willis, J.; Martinot, T.A.; Ghiviriga, I.; Abboud, K.A.; Hudlicky, T. Synthesis, structure, and biological evaluation of novel N- and O-linked diinositols. J. Am. Chem. Soc., 2002, 124(35), 10416-10426.
[http://dx.doi.org/10.1021/ja0205378] [PMID: 12197743]
[391]
Myeong, I-S.; Kim, J-S.; Lee, Y-T.; Kang, J-C.; Park, S-H.; Jung, C.; Ham, W-H. Asymmetric total synthesis of (−)-conduramine A-1 via a chiral syn, anti-oxazine. Tetrahedron Asymmetry, 2016, 27(17-18), 823-828.
[http://dx.doi.org/10.1016/j.tetasy.2016.06.021]
[392]
Maoka, T.; Yamano, Y.; Wada, A.; Etho, T.; Terada, Y.; Tokuda, H.; Nishino, H. Oxidative metabolites of lycopene and γ-carotene in gac (Momordica cochinchinensis). J. Agric. Food Chem., 2015, 63(5), 1622-1630.
[http://dx.doi.org/10.1021/jf505008d] [PMID: 25633727]
[393]
Cantrell, A.; McGarvey, D.J.; Truscott, T.G.; Rancan, F.; Böhm, F. Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys., 2003, 412(1), 47-54.
[http://dx.doi.org/10.1016/S0003-9861(03)00014-6] [PMID: 12646267]
[394]
Nishino, H.; Tokuda, H.; Satomi, Y.; Masuda, M.; Bu, P.; Onozuk, M.; Yamaguchi, S.; Okuda, Y.; Takayasu, J.; Tsuruta, J.N.; Narisawa, T.; Takasuka, N.; Yano, M. Cancer prevention by carotenoids. Pure Appl. Chem., 1999, 71, 2273-2278.
[http://dx.doi.org/10.1351/pac199971122273]
[395]
Gann, P.H.; Ma, J.; Giovannucci, E.; Willett, W.; Sacks, F.M.; Hennekens, C.H.; Stampfer, M.J. Lower prostate cancer risk in men with elevated plasma lycopene levels: Results of a prospective analysis. Cancer Res., 1999, 59(6), 1225-1230.
[PMID: 10096552]
[396]
Yamano, Y.; Nishiyama, Y.; Aoki, A.; Maoka, T.; Wada, A. Total synthesis of lycopene-5, 6-diol and γ-carotene-5′, 6′-diol stereoisomers and their HPLC separation. Tetrahedron, 2017, 73(15), 2043-2052.
[http://dx.doi.org/10.1016/j.tet.2017.02.048]
[397]
Pang, Z.; Sterner, O. Cibaric acid, a new fatty acid derivative formed enzymically in damaged fruit bodies of Cantharellus cibarius (Chanterelle). J. Org. Chem., 1991, 56(3), 1233-1235.
[http://dx.doi.org/10.1021/jo00003a054]
[398]
Gaunt, M.J.; Sneddon, H.F.; Hewitt, P.R.; Orsini, P.; Hook, D.F.; Ley, S.V. Development of β-keto 1,3-dithianes as versatile intermediates for organic synthesis. Org. Biomol. Chem., 2003, 1(1), 15-16.
[http://dx.doi.org/10.1039/B208982C] [PMID: 12929380]
[399]
Grodner, J.; Gołębiewski, W.M.; Willis, M.C.; Osborne, J.D.; Gucma, M. The First Stereoselective Synthesis of a Dithiane Derivative of the C18 β-Diketodiene System Proposed for an Active Compound Isolated from Cantharellus cibarius (Chanterelle). Synthesis, 2015, 47(08), 1181-1189.
[http://dx.doi.org/10.1055/s-0034-1379984]
[400]
Jee, H.-S.; Chang, K.-H.; Park, S.-H.; Kim, K.-T.; Paik, H.-D. Morphological characterization, chemical components, and biofunctional activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: a comparative study Food rev. inter., 2014, 30(2), 91-111.
[401]
Komakine, N.; Okasaka, M.; Takaishi, Y.; Kawazoe, K.; Murakami, K.; Yamada, Y. New dammarane-type saponin from roots of Panax notoginseng. J. Nat. Med., 2006, 60(2), 135-137.
[http://dx.doi.org/10.1007/s11418-005-0016-0]
[402]
Appendino, G.; Pollastro, F.; Verotta, L.; Ballero, M.; Romano, A.; Wyrembek, P.; Szczuraszek, K.; Mozrzymas, J.W.; Taglialatela-Scafati, O. Polyacetylenes from sardinian Oenanthe fistulosa: a molecular clue to risus sardonicus. J. Nat. Prod., 2009, 72(5), 962-965.
[http://dx.doi.org/10.1021/np8007717] [PMID: 19245244]
[403]
Deng, S.; Wang, Y.; Inui, T.; Chen, S.N.; Farnsworth, N.R.; Cho, S.; Franzblau, S.G.; Pauli, G.F. Anti-TB polyynes from the roots of Angelica sinensis. Phytother. Res., 2008, 22(7), 878-882.
[http://dx.doi.org/10.1002/ptr.2303] [PMID: 18567055]
[404]
Zhou, Y.; Huang, Y.; Li, S.; Yang, P.; Zhong, J.; Yin, J.; Ji, K.; Yang, Y.; Ye, N.; Wang, L. Total syntheses of 9-epoxyfalcarindiol and its diastereomer. Tetrahedron Asymmetry, 2017, 28(2), 288-295.
[http://dx.doi.org/10.1016/j.tetasy.2016.12.008]
[405]
Fukuyama, Y.; Kubo, M.; Esumi, T.; Harada, K.; Hioki, H. Chemistry and biological activities of vibsane-type diterpenoids. Heterocycles, 2010, 81(7), 1571.
[http://dx.doi.org/10.3987/REV-10-671]
[406]
Kawazu, K. Isolation of Vibsanines A, B, C, D, E and F from Viburnum odoratissimum. Agric. Biol. Chem., 1980, 44(6), 1367-1372.
[407]
Takao, K.; Tsunoda, K.; Kurisu, T.; Sakama, A.; Nishimura, Y.; Yoshida, K.; Tadano, K. Total synthesis of (+)-vibsanin A. Org. Lett., 2015, 17(3), 756-759.
[http://dx.doi.org/10.1021/acs.orglett.5b00086] [PMID: 25622000]
[408]
Kamchonwongpaisan, S.; Nilanonta, C.; Tarnchompoo, B.; Thebtaranonth, C.; Thebtaranonth, Y.; Yuthavong, Y.; Kongsaeree, P.; Clardy, J. An antimalarial peroxide from Amomum krervanh Pierre. Tetrahedron Lett., 1995, 36(11), 1821-1824.
[http://dx.doi.org/10.1016/0040-4039(95)00152-3]
[409]
Hu, X.; Maimone, T.J. Four-step synthesis of the antimalarial cardamom peroxide via an oxygen stitching strategy. J. Am. Chem. Soc., 2014, 136(14), 5287-5290.
[http://dx.doi.org/10.1021/ja502208z] [PMID: 24673099]
[410]
Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073.
[http://dx.doi.org/10.1111/bph.12009] [PMID: 23072320]
[411]
Bhat, R.; Adam, A.T.; Lee, J.J.; Gasiewicz, T.A.; Henry, E.C.; Rotella, D.P. Towards the discovery of drug-like epigallocatechin gallate analogs as Hsp90 inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(10), 2263-2266.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.088] [PMID: 24745965]
[412]
Gloer, J.B.; Rinderknecht, B.L.; Wicklow, D.T.; Dowd, P.F. Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J. Org. Chem., 1989, 54(11), 2530-2532.
[http://dx.doi.org/10.1021/jo00272a012]
[413]
Bian, M.; Wang, Z.; Xiong, X.; Sun, Y.; Matera, C.; Nicolaou, K.C.; Li, A. Total syntheses of anominine and tubingensin A. J. Am. Chem. Soc., 2012, 134(19), 8078-8081.
[http://dx.doi.org/10.1021/ja302765m] [PMID: 22537293]
[414]
Dias, L.C.; de Oliveira, L.G. Total synthesis of (+)-crocacin C. Org. Lett., 2001, 3(24), 3951-3954.
[http://dx.doi.org/10.1021/ol016845c] [PMID: 11720577]
[415]
Paterson, I.; Lombart, H-G.; Allerton, C. Total synthesis of elaiolide using a copper (I)-promoted stille cyclodimerization reaction. Org. Lett., 1999, 1(1), 19-22.
[http://dx.doi.org/10.1021/ol990004c]
[416]
Kunze, B. JANSEN, R.; HÖFLE, G.; Reichenbach, H. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (myxobacteria). J. Antibiot. (Tokyo), 1994, 47(8), 881-886.
[http://dx.doi.org/10.7164/antibiotics.47.881] [PMID: 7928674]
[417]
Crowley, P.J.; Aspinall, I.H.; Gillen, K.; Godfrey, C.R.; Devillers, I.M.; Munns, G.R.; Sageot, O-A.; Swanborough, J.; Worthington, P.A.; Williams, J. The crocacins: Novel natural products as leads for agricultural fungicides. CHIMIA Inter. J. Chem., 2003, 57(11), 685-691.
[http://dx.doi.org/10.2533/000942903777678669]
[418]
Dias, L.C.; de Oliveira, L.G.; Vilcachagua, J.D.; Nigsch, F. Total synthesis of (+)-crocacin D. J. Org. Chem., 2005, 70(6), 2225-2234.
[http://dx.doi.org/10.1021/jo047732k] [PMID: 15760209]
[419]
Moore, R.E.; Pettus, J.A., Jr; Doty, M.S.; Dictyopterene, A. An odoriferous constituent from algae of the genus Dictyopteris. Tetrahedron Lett., 1968, 9(46), 4787-4790.
[http://dx.doi.org/10.1016/S0040-4039(00)75957-0]
[420]
Dorsch, D.; Kunz, E.; Helmchen, G. Syntheses of dictyopterene B (hormosirene) and its enantiomer via asymmetric ScN′ reactions. Tetrahedron Lett., 1985, 26(28), 3319-3322.
[http://dx.doi.org/10.1016/S0040-4039(00)98287-X]
[421]
Hohn, E.; Paleček, J.; Pietruszka, J. Synthesis of Dictyopterene A. Synlett, 2008, 2008(07), 971-974.
[http://dx.doi.org/10.1055/s-2008-1042918]
[422]
Garcia, P.G.; Hohn, E.; Pietruszka, J. Synthesis of enantiomerically pure vinylcyclopropylboronic esters via cross-metathesis. J. Organomet. Chem., 2003, 680(1-2), 281-285.
[http://dx.doi.org/10.1016/S0022-328X(03)00403-0]
[423]
Maryanoff, B.E.; Reitz, A.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy