Review Article

Biodegradable Nanoparticles: A Recent Approach and Applications

Author(s): Vijay Patil* and Asha Patel

Volume 21, Issue 16, 2020

Page: [1722 - 1732] Pages: 11

DOI: 10.2174/1389450121666200916091659

Price: $65

Abstract

Biodegradable nanoparticles (NPs) are the novel carriers for the administration of drug molecules. Biodegradable nanoparticles have become popular recently because of their special features such as targeted delivery of drugs, improved bioavailability, and better therapeutic effectiveness to administer the drug at a constant rate. Polymeric NPs are very small-sized polymeric colloidal elements in which a drug of interest may be encapsulated or incorporated in their polymeric network or conjugated or adsorbed on the layer. Various polymers are employed in the manufacturing of nanoparticles, some of the frequently employed polymers are agents, chitosan, cellulose, gelatin, gliadin, polylactic acid, polylactic-co-glycolic acid, and pullulan. Nanoparticles have been progressively explored for the delivery of targeted ARVs to cells of HIV-infected and have performed the prolonged kinetic release. Drug embedded in this system can give better effectiveness, diminished resistance of drugs, reduction in systemic toxicity and symptoms, and also enhanced patient compliance. The present review highlights the frequently employed manufacturing methods for biodegradable nanoparticles, various polymers used, and its application in anti-retroviral therapy. Also, common evaluation parameters to check the purity of nanoparticles, ongoing and recently concluded clinical trials and patents filled by the various researchers, and the future implication of biodegradable NPs in an innovative drug delivery system are described. The biodegradable NPs are promising systems for the administration of a broad variety of drugs including anti-retroviral drugs, and hence biodegradable nanoparticles can be employed in the future for the treatment of several diseases and disorders.

Keywords: Anti-Retroviral therapy, biodegradable nanoparticles, clinical study, future implication, manufacturing methods, patents, polymers employed.

Graphical Abstract

[1]
Brzoska M, Langer K, Coester C, Loitsch S, Wagner TOF, Mallinckrodt Cv. Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun 2004; 318(2): 562-70.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.067] [PMID: 15120637]
[2]
Bender AR, von Briesen H, Kreuter J, Duncan IB, Rübsamen-Waigmann H. Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 1996; 40(6): 1467-71.
[http://dx.doi.org/10.1128/AAC.40.6.1467] [PMID: 8726020]
[3]
Rhaese S, von Briesen H, Rübsamen-Waigmann H, Kreuter J, Langer K. Human serum albumin-polyethylenimine nanoparticles for gene delivery. J Control Release 2003; 92(1-2): 199-208.
[http://dx.doi.org/10.1016/S0168-3659(03)00302-X] [PMID: 14499197]
[4]
Roy K, Mao H-Q, Huang S-K, Leong KW. Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 1999; 5(4): 387-91.
[http://dx.doi.org/10.1038/7385] [PMID: 10202926]
[5]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[6]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[7]
Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005; 293(1-2): 261-70.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[8]
Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 2002; 245(1-2): 109-21.
[http://dx.doi.org/10.1016/S0378-5173(02)00342-3] [PMID: 12270248]
[9]
Fassas A, Buffels R, Kaloyannidis P, Anagnostopoulos A. Safety of high-dose liposomal daunorubicin (daunoxome) for refractory or relapsed acute myeloblastic leukaemia. Br J Haematol 2003; 122(1): 161-3.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04395_3.x] [PMID: 12823360]
[10]
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 2011; 9(1): 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[11]
Labhasetwar V, Song C, Levy RJ. Nanoparticle drug delivery system for restenosis. Adv Drug Deliv Rev 1997; 24(1): 63-85.
[http://dx.doi.org/10.1016/S0169-409X(96)00483-8]
[12]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[13]
Zhang J, Saltzman M. Engineering biodegradable nanoparticles for drug and gene delivery. Chem Eng Prog 2013; 109(3): 25-30.
[PMID: 25374435]
[14]
Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond) 2010; 5(2): 269-85.
[http://dx.doi.org/10.2217/nnm.10.1] [PMID: 20148638]
[15]
Furin JJ, Behforouz HL, Shin SS, et al. Expanding global HIV treatment: case studies from the field. Ann N Y Acad Sci 2008; 1136(1): 12-20.
[http://dx.doi.org/10.1196/annals.1425.004] [PMID: 17954668]
[16]
Cunha-Reis C, Machado A, Barreiros L, et al. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J Control Release 2016; 243(243): 43-53.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.020] [PMID: 27664327]
[17]
Song CX, Labhasetwar V, Murphy H, et al. Formulation and Characterization of Biodegradable Nanoparticles for Intravascular Local Drug Delivery. J Control Release 1997; 43(2): 197-212.
[http://dx.doi.org/10.1016/S0168-3659(96)01484-8]
[18]
Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 2005; 108(1): 84-96.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.013] [PMID: 16154222]
[19]
Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2001; 299(2): 775-81.
[PMID: 11602694]
[20]
Brannon-Peppas L. Recent Advances on the Use of Biodegradable Microparticles and Nanoparticles in Controlled Drug Delivery. Int J Pharm 1995; 116(1): 1-9.
[http://dx.doi.org/10.1016/0378-5173(94)00324-X]
[21]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[22]
Marto J, Gouveia LF, Gonçalves LM, et al. A Quality by design (QbD) approach on starch-based nanocapsules: A promising platform for topical drug delivery. Colloids Surf B Biointerfaces 2016; 143: 177-85.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.039] [PMID: 27003468]
[23]
Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006; 97(6): 1184-90.
[http://dx.doi.org/10.1002/jcb.20796] [PMID: 16440317]
[24]
Kumar L, Verma S, Prasad DN, Bhardwaj A, Vaidya B, Jain AK. Nanotechnology: a magic bullet for HIV AIDS treatment. Artif Cells Nanomed Biotechnol 2015; 43(2): 71-86.
[http://dx.doi.org/10.3109/21691401.2014.883400] [PMID: 24564348]
[25]
Amiji MM, Vyas TK, Shah LK. Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discov Med 2006; 6(34): 157-62.
[PMID: 17234137]
[26]
Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 2006; 23(11): 2638-45.
[http://dx.doi.org/10.1007/s11095-006-9101-7] [PMID: 16969696]
[27]
Chakravarthi SS, Robinson DH. Biodegradable nanoparticles. Pharmaceutical sciences encyclopedia American Cancer Society. 2010; pp. pp. 1-30.
[http://dx.doi.org/10.1002/9780470571224.pse353]
[28]
Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P, Simal-Lozano J. Determination of the uronic acid composition of seaweed dietary fibre by HPLC. Biomed Chromatogr 2004; 18(2): 90-7.
[http://dx.doi.org/10.1002/bmc.297] [PMID: 15039960]
[29]
Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci 1993; 82(9): 912-7.
[http://dx.doi.org/10.1002/jps.2600820909] [PMID: 8229689]
[30]
Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005; 109(1-3): 256-74.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.023] [PMID: 16266768]
[31]
Ikada Y, Tabata Y. Protein release from gelatin matrices. Adv Drug Deliv Rev 1998; 31(3): 287-301.
[http://dx.doi.org/10.1016/S0169-409X(97)00125-7] [PMID: 10837630]
[32]
Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects--an update. J Pharm Pharmacol 2001; 53(8): 1047-67.
[http://dx.doi.org/10.1211/0022357011776441] [PMID: 11518015]
[33]
Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology 2005; 41(6): 1211-9.
[http://dx.doi.org/10.1002/hep.20720] [PMID: 15915465]
[34]
Lin W, Garnett MC, Davis SS, Schacht E, Ferruti P, Illum L. Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. J Control Release 2001; 71(1): 117-26.
[http://dx.doi.org/10.1016/S0168-3659(01)00209-7] [PMID: 11245913]
[35]
Garg A, Visht S. Sharma; P. & Kumar; N. Formulation, Characterization and Application on Nanoparticle: A Review. Pharm Sin 2011; 2(2): 17-26.
[36]
Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D, L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 1993; 25(1-2): 89-98.
[http://dx.doi.org/10.1016/0168-3659(93)90097-O]
[37]
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An Overview of Preparation and Characterization. J Appl Pharm Sci 2011; 1(6): 228-34.
[38]
Graves RA, Ledet GA, Glotser EY, Mitchner DM, Bostanian LA, Mandal TK. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide. Eur J Pharm Sci 2015; 76: 1-9.
[http://dx.doi.org/10.1016/j.ejps.2015.04.024] [PMID: 25933716]
[39]
Kokate A, Li X, Jasti B. Transport of a novel anti-cancer agent, fenretinide across Caco-2 monolayers. Invest New Drugs 2007; 25(3): 197-203.
[http://dx.doi.org/10.1007/s10637-006-9026-3] [PMID: 17146731]
[40]
Buckley ST, Fischer SM, Fricker G, Brandl M. In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives European Journal of Pharmaceutical Sciences 2012; 45(3): 235-50.
[41]
Mohanraj VJ, Chen Y. Nanoparticles-a review. Trop J Pharm Res 2006; 5(1): 561-73.
[42]
Kumar; V. D., Verma, P. R. P., & Singh, S. K. Development and Evaluation of Biodegradable Polymeric Nanoparticles for the Effective Delivery of Quercetin Using a Quality by Design Approach - LWT-. Food Sci Technol (Campinas) 2015; 61(2): 330-8.
[43]
Muthu MS, Rawat MK, Mishra A, Singh S. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine (Lond) 2009; 5(3): 323-33.
[http://dx.doi.org/10.1016/j.nano.2008.12.003] [PMID: 19523427]
[44]
Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002; 19(2): 99-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10] [PMID: 12197610]
[55]
Gültekin HE. DEĞİM, Z. Biodegradable Polymeric Nanoparticles Are Effective Systems for Controlled Drug Delivery. FABAD J Pharm Sci 2013; 38(2): 107-18.
[56]
Nobs L, Buchegger F, Gurny R, Allémann E. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 2006; 17(1): 139-45.
[http://dx.doi.org/10.1021/bc050137k] [PMID: 16417262]
[57]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[58]
Damge C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP. Nanocapsules as Carriers for Oral Peptide Delivery. J Control Release 1990; 13(2–3): 233-9.
[http://dx.doi.org/10.1016/0168-3659(90)90013-J]
[59]
Ramtoola Z. Controlled release biodegradable nanoparticles containing insulin U.S. Patent 5,641,515, 1997.
[60]
Grandfils C, Jerome R, Nihant N, Teyssie P. Biocompatible and biodegradable nanoparticles designed for proteinaceous drugs absorption and delivery U.S. Patent 5, 962, 566, 1999.
[61]
Erathodiyil N, Reddy G, Ham Y. Biodegradable nanoparticles U.S. 11/176,595, 2007.
[62]
Popescu C, Onyuksel H. Biodegradable nanoparticles incorporating highly hydrophilic positively charged drugs U.S Patent 10/832,136, 2004.
[63]
Popescu C, Onyuksel H. Biodegradable nanoparticles incorporating highly hydrophilic positively charged drugs U.S Patent 12/059,483, 2008.
[64]
Youngs WJ, Hindi K, Medvetz D. Metal complexes incorporated within biodegradable nanoparticles and their use U.S. Patent 8,282,944, 2012.
[65]
Gref R, Minamitake Y, Langer RS. Biodegradable injectable nanoparticles U.S. Patent 5,543,158, 1996.
[66]
Ghoroghchian P, Ostertag E. Biodegradable Nanoparticles as Novel Hemoglobin-Based Oxygen Carriers and Methods of Using the Same U.S. Patent 8808748B2, 2014.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy