[1]
Liu, W.Z.; Ma, L.Y.; Liu, D.S.; Huang, Y.L.; Wang, C.H.; Shi, S.S.; Pan, X.H.; Song, X.D.; Zhu, R.X. Peniciketals A-C, new spiroketals from saline soil derived Penicillium raistrichii. Org. Lett., 2014, 16(1), 90-93.
[2]
Gao, X.; Zhou, Y.; Sun, H.; Liu, D.; Zhang, J.; Zhang, J.; Liu, W.; Pan, X. Effects of a spiroketal compound Peniciketal A and its molecular mechanisms on growth inhibition in human leukemia. Toxicol. Appl. Pharmacol., 2019, 366, 1-9.
[3]
Gao, X.; Zhou, Y.; Zheng, X.; Sun, H.; Zhang, J.; Liu, W.; Pan, X. Peniciketal, A. A novel spiroketal compound, exerts anticancer effects by inhibiting cell proliferation, migration and invasion of A549 lung cancer cells. Anticancer. Agents Med. Chem., 2018, 18(11), 1573-1581.
[4]
Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene, 2003, 22(53), 8543-8567.
[5]
Thornberry, N.A. Caspases: a decade of death research. Cell Death Differ., 1999, 6(11), 1023-1027.
[6]
Shibutani, S.T.; Saitoh, T.; Nowag, H.; Munz, C.; Yoshimori, T. Autophagy and autophagy-related proteins in the immune system. Nat. Immunol., 2015, 16(10), 1014-1024.
[7]
El-Khattouti, A.; Selimovic, D.; Haikel, Y.; Hassan, M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J. Cell Death, 2013, 6, 37-55.
[8]
Chaabane, W.; User, S.D.; El-Gazzah, M.; Jaksik, R.; Sajjadi, E.; Rzeszowska-Wolny, J.; Los, M.J. Autophagy, apoptosis, mitoptosis and necrosis: Interdependence between those pathways and effects on cancer. Arch. Immunol. Ther. Exp. (Warsz.), 2013, 61(1), 43-58.
[9]
Cifani, P.; Kentsis, A. Towards comprehensive and quantitative proteomics for diagnosis and therapy of human disease. Proteomics, 2017, 17(1-2), 1600079.
[10]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[11]
Haferlach, T.; Schoch, C.; Schnittger, S.; Kern, W.; Loffler, H.; Hiddemann, W. Distinct genetic patterns can be identified in acute monoblastic and acute monocytic leukaemia (FAB AML M5a and M5b): A study of 124 patients. Br. J. Haematol., 2002, 118(2), 426-431.
[12]
Villeneuve, P.; Kim, D.T.; Xu, W.; Brandwein, J.; Chang, H. The morphological subcategories of acute monocytic leukemia (M5a and M5b) share similar immunophenotypic and cytogenetic features and clinical outcomes. Leuk. Res., 2008, 32(2), 269-273.
[13]
Lomax, J. Get ready to GO! A biologist’s guide to the gene ontology. Brief. Bioinform., 2005, 6(3), 298-304.
[14]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[15]
Yahiro, K.; Satoh, M.; Nakano, M.; Hisatsune, J.; Isomoto, H.; Sap, J.; Suzuki, H.; Nomura, F.; Noda, M.; Moss, J.; Hirayama, T. Low-density Lipoprotein Receptor-Related Protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. J. Biol. Chem., 2012, 287(37), 31104-31115.
[16]
Ambjorn, M.; Asmussen, J.W.; Lindstam, M.; Gotfryd, K.; Jacobsen, C.; Kiselyov, V.V.; Moestrup, S.K.; Penkowa, M.; Bock, E.; Berezin, V. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family. J. Neurochem., 2008, 104(1), 21-37.
[17]
Jiao, Y.; Ding, H.; Huang, S.; Liu, Y.; Sun, X.; Wei, W.; Ma, J.; Zheng, F. Bcl-XL and Mcl-1 upregulation by calreticulin promotes apoptosis resistance of fibroblast-like synoviocytes via activation of PI3K/Akt and STAT3 pathways in rheumatoid arthritis. Clin. Exp. Rheumatol., 2018, 36(5), 841-849.
[18]
Zhang, W.; Liu, Z.; Zhang, Y.; Bao, Q.; Wu, W.; Huang, H.; Liu, X. Silencing calreticulin gene might protect cardiomyocytes from angiotensin II-induced apoptosis. Life Sci., 2018, 198, 119-127.
[19]
Ju, H.Q.; Lu, Y.X.; Wu, Q.N.; Liu, J.; Zeng, Z.L.; Mo, H.Y.; Chen, Y.; Tian, T.; Wang, Y.; Kang, T.B.; Xie, D.; Zeng, M.S.; Huang, P.; Xu, R.H. Disrupting G6PD-mediated redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene, 2017, 36(45), 6282-6292.
[20]
Wang, X.; Liu, H.; Zhang, X.; Li, X.; Gu, H.; Zhang, H.; Fan, R. G6PD downregulation triggered growth inhibition and induced apoptosis by regulating STAT3 signaling pathway in esophageal squamous cell carcinoma. Tumour Biol., 2016, 37(1), 781-789.
[21]
Xia, Y.; Xia, H.; Chen, D.; Liao, Z.; Yan, Y. Mechanisms of autophagy and apoptosis mediated by JAK2 signaling pathway after spinal cord injury of rats. Exp. Ther. Med., 2017, 14(2), 1589-1593.
[22]
Cernaj, I.E. Simultaneous dual targeting of Par-4 and G6PD: A promising new approach in cancer therapy? Quintessence of a literature review on survival requirements of tumor cells. Cancer Cell Int., 2016, 16, 87.