Review Article

神经生长因子、压力和疾病

卷 28, 期 15, 2021

发表于: 18 August, 2020

页: [2943 - 2959] 页: 17

弟呕挨: 10.2174/0929867327999200818111654

价格: $65

摘要

压力是体内平衡的持续威胁,表现为不同的外在和内在刺激(压力源,汉斯·塞耶的“有害物质”),例如攻击性行为、恐惧、疾病、身体活动、药物、手术损伤以及环境和生理变化。我们的生物体通过激活适应性压力系统来激活补偿反应以恢复体内平衡来应对压力。神经生长因子 (NGF) 被发现是一种信号分子,与交感神经和外周感觉神经元的存活、保护、分化和增殖有关。 NGF 介导压力,在将环境刺激转化为生理和病理反馈方面发挥重要作用,因为 NGF 水平在暴露于压力事件后会发生重要变化。众所周知,心理压力、生活方式压力和氧化压力会增加精神分裂症、重度抑郁症、双相情感障碍、酒精使用障碍和代谢综合征等代谢障碍的风险。这篇综述报告了最近描述 NGF 在与压力相关的精神和代谢障碍中的活性的工作。

关键词: 压力、神经生长因子 (NGF)、精神障碍、代谢综合征、酒精使用障碍、代谢障碍。

[1]
Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol., 2009, 5(7), 374-381.
[http://dx.doi.org/10.1038/nrendo.2009.106] [PMID: 19488073]
[2]
Nicolaides, N.C.; Kyratzi, E.; Lamprokostopoulou, A.; Chrousos, G.P.; Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation, 2015, 22(1-2), 6-19.
[http://dx.doi.org/10.1159/000362736] [PMID: 25227402]
[3]
Socci, V.; Rossi, R.; Talevi, D.; Crescini, C.; Tempesta, D.; Pacitti, F. Sleep, stress and trauma. J. Psychopathol., 2020, 26(1), 92-98.
[http://dx.doi.org/10.36148/2284-0249-375]
[4]
Yang, L.; Zhao, Y.; Wang, Y.; Liu, L.; Zhang, X.; Li, B.; Cui, R. The effects of psychological stress on depression. Curr. Neuropharmacol., 2015, 13(4), 494-504.
[http://dx.doi.org/10.2174/1570159X1304150831150507] [PMID: 26412069]
[5]
Loi, M.; Mossink, J.C.L.; Meerhoff, G.F.; Den Blaauwen, J.L.; Lucassen, P.J.; Joëls, M. Effects of early-life stress on cognitive function and hippocampal structure in female rodents. Neuroscience, 2017, 342, 101-119.
[http://dx.doi.org/10.1016/j.neuroscience.2015.08.024] [PMID: 26297897]
[6]
Tost, H.; Champagne, F.A.; Meyer-Lindenberg, A. Environmental influence in the brain, human welfare and mental health. Nat. Neurosci., 2015, 18(10), 1421-1431.
[http://dx.doi.org/10.1038/nn.4108] [PMID: 26404717]
[7]
Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.H. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front. Behav. Neurosci., 2018, 12, 127.
[http://dx.doi.org/10.3389/fnbeh.2018.00127] [PMID: 30034327]
[8]
Mohammed, A.K.; Winblad, B.; Ebendal, T.; Lärkfors, L. Environmental influence on behaviour and nerve growth factor in the brain. Brain Res., 1990, 528(1), 62-72.
[http://dx.doi.org/10.1016/0006-8993(90)90195-H] [PMID: 2245339]
[9]
McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci., 2015, 18(10), 1353-1363.
[http://dx.doi.org/10.1038/nn.4086] [PMID: 26404710]
[10]
Jackson, M. Evaluating the role of hans selye in the modern history of stress.Stress, Shock, and Adaptation in the Twentieth Century; Cantor, D.; Ramsden, E., Eds.; Rochester, New York, 2014, pp. 21-48.
[11]
Russell, J.A.; Shipston, M. Neuroendocrinology of Stress; Wiley & Sons: New York, 2015.
[http://dx.doi.org/10.1002/9781118921692]
[12]
Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252.
[PMID: 1538563]
[13]
Dayas, C.V.; Buller, K.M.; Crane, J.W.; Xu, Y.; Day, T.A. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur. J. Neurosci., 2001, 14(7), 1143-1152.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01733.x] [PMID: 11683906]
[14]
de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci., 2005, 6(6), 463-475.
[http://dx.doi.org/10.1038/nrn1683] [PMID: 15891777]
[15]
Joëls, M.; Baram, T.Z. The neuro-symphony of stress. Nat. Rev. Neurosci., 2009, 10(6), 459-466.
[http://dx.doi.org/10.1038/nrn2632] [PMID: 19339973]
[16]
Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci., 2009, 10(6), 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[17]
Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[18]
Carrasco, G.A.; Van de Kar, L.D. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol., 2003, 463(1-3), 235-272.
[http://dx.doi.org/10.1016/S0014-2999(03)01285-8] [PMID: 12600714]
[19]
Streeten, D.H.P.; Anderson, G.H., Jr; Dalakos, T.G.; Seeley, D.; Mallov, J.S.; Eusebio, R.; Sunderlin, F.S.; Badawy, S.Z.A.; King, R.B. Normal and abnormal function of the hypothalamic-pituitary-adrenocortical system in man. Endocr. Rev., 1984, 5(3), 371-394.
[http://dx.doi.org/10.1210/edrv-5-3-371] [PMID: 6088218]
[20]
Toda, M.; Den, R.; Nagasawa, S.; Kitamura, K.; Morimoto, K. Relationship between lifestyle scores and salivary stress markers cortisol and chromogranin A. Arch. Environ. Occup. Health, 2005, 60(5), 266-269.
[http://dx.doi.org/10.3200/AEOH.60.5.266-269] [PMID: 17290847]
[21]
Goodin, B.R.; Smith, M.T.; Quinn, N.B.; King, C.D.; McGuire, L. Poor sleep quality and exaggerated salivary cortisol reactivity to the cold pressor task predict greater acute pain severity in a non-clinical sample. Biol. Psychol., 2012, 91(1), 36-41.
[http://dx.doi.org/10.1016/j.biopsycho.2012.02.020] [PMID: 22445783]
[22]
Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The impact of stress on body function: a review. EXCLI J., 2017, 16, 1057-1072.
[http://dx.doi.org/10.17179/excli2017-480] [PMID: 28900385]
[23]
Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci., 2009, 10(6), 434-445.
[http://dx.doi.org/10.1038/nrn2639] [PMID: 19401723]
[24]
Smith, M.A. Hippocampal vulnerability to stress and aging: possible role of neurotrophic factors. Behav. Brain Res., 1996, 78(1), 25-36.
[http://dx.doi.org/10.1016/0166-4328(95)00220-0] [PMID: 8793034]
[25]
Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol., 2005, 5(3), 243-251.
[http://dx.doi.org/10.1038/nri1571] [PMID: 15738954]
[26]
Ben-Eliyahu, S.; Yirmiya, R.; Liebeskind, J.C.; Taylor, A.N.; Gale, R.P. Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system. Brain Behav. Immun., 1991, 5(2), 193-205.
[http://dx.doi.org/10.1016/0889-1591(91)90016-4] [PMID: 1654166]
[27]
Bruscolini, A.; Sacchetti, M.; La Cava, M.; Nebbioso, M.; Iannitelli, A.; Quartini, A.; Lambiase, A.; Ralli, M.; de Virgilio, A.; Greco, A. Quality of life and neuropsychiatric disorders in patients with graves’ orbitopathy: current concepts. Autoimmun. Rev., 2018, 17(7), 639-643.
[http://dx.doi.org/10.1016/j.autrev.2017.12.012] [PMID: 29729448]
[28]
Lupien, S.J.; McEwen, B.S. The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res. Brain Res. Rev., 1997, 24(1), 1-27.
[http://dx.doi.org/10.1016/S0165-0173(97)00004-0] [PMID: 9233540]
[29]
Tilbrook, A.J.; Turner, A.I.; Clarke, I.J. Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences. Rev. Reprod., 2000, 5(2), 105-113.
[http://dx.doi.org/10.1530/ror.0.0050105] [PMID: 10864855]
[30]
Ans, A.H.; Anjum, I.; Satija, V.; Inayat, A.; Asghar, Z.; Akram, I.; Shrestha, B. Neurohormonal regulation of appetite and its relationship with stress: a mini literature review. Cureus, 2018, 10(7)e3032
[http://dx.doi.org/10.7759/cureus.3032] [PMID: 30254821]
[31]
Greenwood-Van Meerveld, B.; Johnson, A.C.; Grundy, D. gastrointestinal physiology and function. Handb. Exp. Pharmacol., 2017, 239, 1-16.
[http://dx.doi.org/10.1007/164_2016_118] [PMID: 28176047]
[32]
Pacitti, F.; Maraone, A.; Zazzara, F.; Biondi, M.; Caredda, M. [Stress and night eating syndrome: a comparison study between a sample of psychiatric outpatients and healthy subjects]. Riv. Psichiatr., 2011, 46(3), 195-202.
[http://dx.doi.org/10.1708/889.9810] [PMID: 21779100]
[33]
Rozanski, A.; Blumenthal, J.A.; Kaplan, J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation, 1999, 99(16), 2192-2217.
[http://dx.doi.org/10.1161/01.CIR.99.16.2192] [PMID: 10217662]
[34]
Golbidi, S.; Frisbee, J.C.; Laher, I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am. J. Physiol. Heart Circ. Physiol., 2015, 308(12), H1476-H1498.
[http://dx.doi.org/10.1152/ajpheart.00859.2014] [PMID: 25888514]
[35]
Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol., 2018, 15(4), 215-229.
[http://dx.doi.org/10.1038/nrcardio.2017.189] [PMID: 29213140]
[36]
Aloe, L.; Alleva, E.; Fiore, M. Stress and nerve growth factor: findings in animal models and humans. Pharmacol. Biochem. Behav., 2002, 73(1), 159-166.
[http://dx.doi.org/10.1016/S0091-3057(02)00757-8] [PMID: 12076735]
[37]
Aloe, L.; Alleva, E.; De Simone, R. Changes of NGF level in mouse hypothalamus following intermale aggressive behaviour: biological and immunohistochemical evidence. Behav. Brain Res., 1990, 39(1), 53-61.
[http://dx.doi.org/10.1016/0166-4328(90)90120-4] [PMID: 2202329]
[38]
Aloe, L.; Alleva, E.; Böhm, A.; Levi-Montalcini, R. Aggressive behavior induces release of nerve growth factor from mouse salivary gland into the bloodstream. Proc. Natl. Acad. Sci. USA, 1986, 83(16), 6184-6187.
[http://dx.doi.org/10.1073/pnas.83.16.6184] [PMID: 3090553]
[39]
Aloe, L.; Tirassa, P.; Alleva, E. Cold water swimming stress alters NGF and low-affinity NGF receptor distribution in developing rat brain. Brain Res. Bull., 1994, 33(2), 173-178.
[http://dx.doi.org/10.1016/0361-9230(94)90247-X] [PMID: 8275335]
[40]
Fiore, M.; Amendola, T.; Triaca, V.; Tirassa, P.; Alleva, E.; Aloe, L. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: possible implication for brain progenitor cells’ activation. Eur. J. Neurosci., 2003, 17(7), 1455-1464.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02573.x] [PMID: 12713648]
[41]
Fiore, M.; Amendola, T.; Triaca, V.; Alleva, E.; Aloe, L. Fighting in the aged male mouse increases the expression of TrkA and TrkB in the subventricular zone and in the hippocampus. Behav. Brain Res., 2005, 157(2), 351-362.
[http://dx.doi.org/10.1016/j.bbr.2004.08.024] [PMID: 15639186]
[42]
Manni, L.; Di Fausto, V.; Fiore, M.; Aloe, L. Repeated restraint and nerve growth factor administration in male and female mice: effect on sympathetic and cardiovascular mediators of the stress response. Curr. Neurovasc. Res., 2008, 5(1), 1-12.
[http://dx.doi.org/10.2174/156720208783565654] [PMID: 18289016]
[43]
Carito, V.; Ceccanti, M.; Tarani, L.; Ferraguti, G.; Chaldakov, G.N.; Fiore, M. Neurotrophins’ modulation by olive polyphenols. Curr. Med. Chem., 2016, 23(28), 3189-3197.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[44]
Filho, C.B.; Jesse, C.R.; Donato, F.; Giacomeli, R.; Del Fabbro, L.; da Silva Antunes, M.; de Gomes, M.G.; Goes, A.T.R.; Boeira, S.P.; Prigol, M.; Souza, L.C. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience, 2015, 289, 367-380.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.048] [PMID: 25592430]
[45]
Badowska-Szalewska, E.; Krawczyk, R.; Ludkiewicz, B.; Moryś, J. The effect of mild stress stimulation on the nerve growth factor (NGF) and tyrosine kinase receptor A (TrkA) immunoreactivity in the paraventricular nucleus (PVN) of the hypothalamus and hippocampus in aged vs. adult rats. Neuroscience, 2015, 290, 346-356.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.052] [PMID: 25644424]
[46]
Liu, X.; Zhang, T.; He, S.; Hong, B.; Chen, Z.; Peng, D.; Wu, Y.; Wen, H.; Lin, Z.; Fang, Y.; Jiang, K. Elevated serum levels of FGF-2, NGF and IGF-1 in patients with manic episode of bipolar disorder. Psychiatry Res., 2014, 218(1-2), 54-60.
[http://dx.doi.org/10.1016/j.psychres.2014.03.042] [PMID: 24793757]
[47]
Cirulli, F.; Alleva, E. The NGF saga: from animal models of psychosocial stress to stress-related psychopathology. Front. Neuroendocrinol., 2009, 30(3), 379-395.
[http://dx.doi.org/10.1016/j.yfrne.2009.05.002] [PMID: 19442684]
[48]
Berry, A.; Bindocci, E.; Alleva, E. NGF, brain and behavioral plasticity. Neural Plast., 2012, 2012784040
[http://dx.doi.org/10.1155/2012/784040] [PMID: 22474604]
[49]
Levi-Montalcini, R. The nerve growth factor 35 years later. Science, 1987, 237(4819), 1154-1162.
[http://dx.doi.org/10.1126/science.3306916] [PMID: 3306916]
[50]
Levi-Montalcini, R.; Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool., 1951, 116(2), 321-361.
[http://dx.doi.org/10.1002/jez.1401160206] [PMID: 14824426]
[51]
Fiore, M.; Chaldakov, G.N.; Aloe, L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev. Neurosci., 2009, 20(2), 133-145.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.2.133] [PMID: 19774790]
[52]
Bracci-Laudiero, L.; De Stefano, M.E. NGF in early embryogenesis, differentiation, and pathology in the nervous and immune systems. Curr. Top. Behav. Neurosci., 2016, 29, 125-152.
[http://dx.doi.org/10.1007/7854_2015_420] [PMID: 26695167]
[53]
Niewiadomska, G.; Baksalerska-Pazera, M.; Riedel, G. The septo-hippocampal system, learning and recovery of function. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(5), 791-805.
[http://dx.doi.org/10.1016/j.pnpbp.2009.03.039] [PMID: 19389457]
[54]
Rosso, P.; Iannitelli, A.; Pacitti, F.; Quartini, A.; Fico, E.; Fiore, M.; Greco, A.; Ralli, M.; Tirassa, P. Vagus nerve stimulation and neurotrophins: a biological psychiatric perspective. Neurosci. Biobehav. Rev., 2020, 113, 338-353.
[http://dx.doi.org/10.1016/j.neubiorev.2020.03.034] [PMID: 32278791]
[55]
D’Angelo, A.; Ceccanti, M.; Petrella, C.; Greco, A.; Tirassa, P.; Rosso, P.; Ralli, M.; Ferraguti, G.; Fiore, M.; Messina, M.P. Role of neurotrophins in pregnancy, delivery and postpartum. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 247, 32-41.
[http://dx.doi.org/10.1016/j.ejogrb.2020.01.046] [PMID: 32058187]
[56]
Barde, Y.A. Neurotrophic factors: an evolutionary perspective. J. Neurobiol., 1994, 25(11), 1329-1333.
[http://dx.doi.org/10.1002/neu.480251102] [PMID: 7852988]
[57]
Minnone, G.; De Benedetti, F.; Bracci-Laudiero, L. NGF and its receptors in the regulation of inflammatory response. Int. J. Mol. Sci., 2017, 18(5)E1028
[http://dx.doi.org/10.3390/ijms18051028] [PMID: 28492466]
[58]
Meeker, R.B.; Williams, K.S. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen. Res., 2015, 10(5), 721-725.
[http://dx.doi.org/10.4103/1673-5374.156967] [PMID: 26109945]
[59]
Huang, E.J.; Reichardt, L.F. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem., 2003, 72(1), 609-642.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[60]
Kaplan, D.R.; Martin-Zanca, D.; Parada, L.F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature, 1991, 350(6314), 158-160.
[http://dx.doi.org/10.1038/350158a0] [PMID: 1706478]
[61]
Hirose, M.; Kuroda, Y.; Murata, E. NGF/TrkA signaling as a therapeutic target for pain. Pain Pract., 2016, 16(2), 175-182.
[http://dx.doi.org/10.1111/papr.12342] [PMID: 26452158]
[62]
Niewiadomska, G.; Mietelska-Porowska, A.; Mazurkiewicz, M. The cholinergic system, nerve growth factor and the cytoskeleton. Behav. Brain Res., 2011, 221(2), 515-526.
[http://dx.doi.org/10.1016/j.bbr.2010.02.024] [PMID: 20170684]
[63]
Aloe, L.; Fiore, M.; Probert, L.; Turrini, P.; Tirassa, P. Overexpression of tumour necrosis factor alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine, 1999, 11(1), 45-54.
[http://dx.doi.org/10.1006/cyto.1998.0397] [PMID: 10080878]
[64]
Peleshok, J.; Saragovi, H.U. Functional mimetics of neurotrophins and their receptors. Biochem. Soc. Trans., 2006, 34(Pt 4), 612-617.
[http://dx.doi.org/10.1042/BST0340612] [PMID: 16856874]
[65]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[66]
Becker, K.; Cana, A.; Baumgärtner, W.; Spitzbarth, I. p75 neurotrophin receptor: a double-edged sword in pathology and regeneration of the central nervous system. Vet. Pathol., 2018, 55(6), 786-801.
[http://dx.doi.org/10.1177/0300985818781930] [PMID: 29940812]
[67]
Coulson, E.J.; Reid, K.; Shipham, K.M.; Morley, S.; Kilpatrick, T.J.; Bartlett, P.F. The role of neurotransmission and the chopper domain in p75 neurotrophin receptor death signaling. Prog. Brain Res., 2004, 146, 41-62.
[http://dx.doi.org/10.1016/S0079-6123(03)46003-2] [PMID: 14699955]
[68]
Braunger, B.M.; Demmer, C.; Tamm, E.R. Programmed cell death during retinal development of the mouse eye. Adv. Exp. Med. Biol., 2014, 801, 9-13.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_2] [PMID: 24664675]
[69]
Deponti, D.; Buono, R.; Catanzaro, G.; De Palma, C.; Longhi, R.; Meneveri, R.; Bresolin, N.; Bassi, M.T.; Cossu, G.; Clementi, E.; Brunelli, S. The low-affinity receptor for neurotrophins p75NTR plays a key role for satellite cell function in muscle repair acting via RhoA. Mol. Biol. Cell, 2009, 20(16), 3620-3627.
[http://dx.doi.org/10.1091/mbc.e09-01-0012] [PMID: 19553472]
[70]
Blokken, J.; De Rijck, J.; Christ, F.; Debyser, Z. Protein-protein and protein-chromatin interactions of LEDGF/p75 as novel drug targets. Drug Discov. Today. Technol., 2017, 24, 25-31.
[http://dx.doi.org/10.1016/j.ddtec.2017.11.002] [PMID: 29233296]
[71]
Alleva, E.; Aloe, L.; Bigi, S. An updated role for nerve growth factor in neurobehavioural regulation of adult vertebrates. Rev. Neurosci., 1993, 4(1), 41-62.
[http://dx.doi.org/10.1515/REVNEURO.1993.4.1.41] [PMID: 7952382]
[72]
Tore, F.; Tonchev, A.; Fiore, M.; Tuncel, N.; Atanassova, P.; Aloe, L.; Chaldakov, G. From adipose tissue protein secretion to adipopharmacology of disease. Immunol. Endocr. Metab. Agents Med. Chem., 2007, 7(2), 149-155.
[http://dx.doi.org/10.2174/187152207780363712]
[73]
Yuen, E.C.; Mobley, W.C. Therapeutic potential of neurotrophic factors for neurological disorders. Ann. Neurol., 1996, 40(3), 346-354.
[http://dx.doi.org/10.1002/ana.410400304] [PMID: 8797524]
[74]
Fiore, M.; Alleva, E.; Probert, L.; Kollias, G.; Angelucci, F.; Aloe, L. Exploratory and displacement behavior in transgenic mice expressing high levels of brain TNF-alpha. Physiol. Behav., 1998, 63(4), 571-576.
[http://dx.doi.org/10.1016/S0031-9384(97)00514-3] [PMID: 9523900]
[75]
Aloe, L.; Micera, A.; Bracci-Laudiero, L.; Vigneti, E.; Turrini, P. Presence of nerve growth factor in the thymus of prenatal, postnatal and pregnant rats. Thymus, 1997, 24(4), 221-231.
[http://dx.doi.org/10.1023/A:1016990503061] [PMID: 9493285]
[76]
Iannitelli, A.; Tirassa, P. Chapter 13- Pain and depression: the janus factor of human suffering. In:An Introduction to Pain and its Relation to Nervous System Disorders; Battaglia, A.A., Ed.; Wiley Blackwell: New York, 2016, pp. 317-344.
[http://dx.doi.org/10.1002/9781118455968.ch13]
[77]
Aloe, L.; Bracci-Laudiero, L.; Alleva, E.; Lambiase, A.; Micera, A.; Tirassa, P. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc. Natl. Acad. Sci. USA, 1994, 91(22), 10440-10444.
[http://dx.doi.org/10.1073/pnas.91.22.10440] [PMID: 7937971]
[78]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Dimitrov, D.; Pancheva, R.; Rancic, G.; Aloe, L. Homo obesus: a metabotrophin-deficient species. Pharmacology and nutrition insight. Curr. Pharm. Des., 2007, 13(21), 2176-2179.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[79]
Chaldakov, G.N.; Aloe, L.; Tonchev, A.B.; Fiore, M. From homo obesus to homo diabesus: neuroadipology insight. In: Molecular Mechanisms Underpinning the Development of Obesity, Nóbrega, C.; Rodriguez- López, R.; Eds.; Springer, Berlin, 2014, pp. 167-178.
[http://dx.doi.org/10.1007/978-3-319-12766-8_11]
[80]
Manni, L.; Aloe, L.; Fiore, M. Changes in cognition induced by social isolation in the mouse are restored by electro-acupuncture. Physiol. Behav., 2009, 98(5), 537-542.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.011] [PMID: 19733189]
[81]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Ralli, M.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Attilia, M.L.; Ceccarelli, R. Nerve growth factor in brain diseases. Biomed. Rev., 2018, 29(0), 1-16.
[http://dx.doi.org/10.14748/bmr.v29.5845]
[82]
Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Manni, L.; Hristova, M.G.; Antonelli, A.; Ghenev, P.I.; Aloe, L. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog. Brain Res., 2004, 146, 279-289.
[http://dx.doi.org/10.1016/S0079-6123(03)46018-4] [PMID: 14699970]
[83]
Chaldakov, G.N.; Fiore, M.; Ghenev, P.I.; Stankulov, I.S.; Aloe, L. Atherosclerotic lesions: possible interactive involvement of intima, adventitia and associated adipose tissue. Int. Med. J., 2000, 7(1), 43-49.
[84]
Aloe, L.; Skaper, S.D.; Leon, A.; Levi-Montalcini, R. Nerve growth factor and autoimmune diseases. Autoimmunity, 1994, 19(2), 141-150.
[http://dx.doi.org/10.3109/08916939409009542] [PMID: 7772704]
[85]
Triaca, V.; Carito, V.; Fico, E.; Rosso, P.; Fiore, M.; Ralli, M.; Lambiase, A.; Greco, A.; Tirassa, P. Cancer stem cells-driven tumor growth and immune escape: the janus face of neurotrophins. Aging (Albany NY), 2019, 11(23), 11770-11792.
[http://dx.doi.org/10.18632/aging.102499] [PMID: 31812953]
[86]
De Santis, S.; Pace, A.; Bove, L.; Cognetti, F.; Properzi, F.; Fiore, M.; Triaca, V.; Savarese, A.; Simone, M.D.; Jandolo, B.; Manzione, L.; Aloe, L. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin. Cancer Res., 2000, 6(1), 90-95.
[PMID: 10656436]
[87]
Aloe, L.; Manni, L.; Properzi, F.; De Santis, S.; Fiore, M. Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis. Auton. Neurosci., 2000, 86(1-2), 84-93.
[http://dx.doi.org/10.1016/S1566-0702(00)00247-2] [PMID: 11269929]
[88]
Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.; Rosso, P.; Fico, E.; Messina, M.P.; Carito, V.; Tarani, L.; Ceccanti, M.; Fiore, M. Nerve growth factor in the psychiatric brain. Riv. Psichiatr., 2020, 55(1), 4-15.
[http://dx.doi.org/10.1708/3301.32713.32051620] [PMID: 32051620]
[89]
Rosso, P.; Fiore, M.; Fico, E.; Iannitelli, A.; Tirassa, P. Acute Stimulation of Vagus Nerve Modulates Brain Neurotrophins, and Stimulates Neuronal Plasticity in the Hippocampus of Adult Male Rats. Biomed. Rev., 2019, 30, 99-109.
[http://dx.doi.org/10.14748/bmr.v30.6391]
[90]
Tirassa, P.; Triaca, V.; Amendola, T.; Fiore, M.; Aloe, L. EGF and NGF injected into the brain of old mice enhance BDNF and ChAT in proliferating subventricular zone. J. Neurosci. Res., 2003, 72(5), 557-564.
[http://dx.doi.org/10.1002/jnr.10614] [PMID: 12749020]
[91]
Fiore, M.; Triaca, V.; Amendola, T.; Tirassa, P.; Aloe, L. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol. Behav., 2002, 77(2-3), 437-443.
[http://dx.doi.org/10.1016/S0031-9384(02)00875-2] [PMID: 12419420]
[92]
Amendola, T.; Fiore, M.; Aloe, L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci. Lett., 2003, 345(1), 37-40.
[http://dx.doi.org/10.1016/S0304-3940(03)00491-9] [PMID: 12809983]
[93]
Di Fausto, V.; Fiore, M.; Tirassa, P.; Lambiase, A.; Aloe, L. Eye drop NGF administration promotes the recovery of chemically injured cholinergic neurons of adult mouse forebrain. Eur. J. Neurosci., 2007, 26(9), 2473-2480.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05883.x] [PMID: 17970722]
[94]
Chaldakov, G.N.; Aloe, L.; Tonchev, A.B.; Rančić, G.; Hristova, M.G.; Tunçel, N.; Kostov, D.D.; Fiore, M.; Nikolova, V.; Bojanić, V. SOS for Homo sapiens obesus. Adipobiology, 2010, 2, 5-8.
[http://dx.doi.org/10.14748/adipo.v2.255]
[95]
Chuenkova, M.V.; Pereira, M.A. The T. cruzi trans-sialidase induces PC12 cell differentiation via MAPK/ERK pathway. Neuroreport, 2001, 12(17), 3715-3718.
[http://dx.doi.org/10.1097/00001756-200112040-00022] [PMID: 11726780]
[96]
Chuenkova, M.V.; Pereiraperrin, M. Neurodegeneration and neuroregeneration in Chagas disease. Adv. Parasitol., 2011, 76, 195-233.
[http://dx.doi.org/10.1016/B978-0-12-385895-5.00009-8] [PMID: 21884893]
[97]
Chuenkova, M.V. PereiraPerrin, M. Chagas’ disease parasite promotes neuron survival and differentiation through TrkA nerve growth factor receptor. J. Neurochem., 2004, 91(2), 385-394.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02724.x] [PMID: 15447671]
[98]
Aloe, L.; Fiore, M. Neuroinflammatory implications of Schistosoma mansoni infection: new information from the mouse model., 1998.
[99]
Aloe, L.; Moroni, R.; Angelucci, F.; Fiore, M. Role of TNF-α but not NGF in murine hyperalgesia induced by parasitic infection. Psychopharmacology (Berl.), 1997, 134(3), 287-292.
[http://dx.doi.org/10.1007/s002130050451] [PMID: 9438678]
[100]
Fiore, M.; Moroni, R.; Aloe, L. Removal of the submaxillary salivary glands and infection with the trematode Schistosoma mansoni alters exploratory behavior and pain thresholds in female mice. Physiol. Behav., 1997, 62(2), 399-406.
[http://dx.doi.org/10.1016/S0031-9384(97)00036-X] [PMID: 9251986]
[101]
Aloe, L.; Moroni, R.; Mollinari, C.; Tirassa, P. Schistosoma mansoni infection enhances the levels of NGF in the liver and hypothalamus of mice. Neuroreport, 1994, 5(9), 1030-1032.
[http://dx.doi.org/10.1097/00001756-199405000-00003] [PMID: 8080952]
[102]
Aloe, L.; Moroni, R.; Fiore, M.; Angelucci, F. Chronic parasite infection in mice induces brain granulomas and differentially alters brain nerve growth factor levels and thermal responses in paws. Acta Neuropathol., 1996, 92(3), 300-305.
[http://dx.doi.org/10.1007/s004010050522] [PMID: 8870833]
[103]
Fiore, M.; Carere, C.; Moroni, R.; Aloe, L. Passive avoidance response in mice infected with Schistosoma mansoni. Physiol. Behav., 2002, 75(4), 449-454.
[http://dx.doi.org/10.1016/S0031-9384(01)00661-8] [PMID: 12062309]
[104]
Fiore, M.; Aloe, L. Neuroinflammatory implication of Schistosoma mansoni infection in the mouse. Arch. Physiol. Biochem., 2001, 109(4), 361-364.
[http://dx.doi.org/10.1076/apab.109.4.361.4247] [PMID: 11935373]
[105]
Fiore, M.; Moroni, R.; Alleva, E.; Aloe, L. Schistosoma mansoni: influence of infection on mouse behavior. Exp. Parasitol., 1996, 83(1), 46-54.
[http://dx.doi.org/10.1006/expr.1996.0047] [PMID: 8654550]
[106]
Diagnostic and Statistical Manual of Mental Disorders : DSM-5; American Psychiatric Association: Washington, D.C., 2013.
[107]
Ghaemi, S.N. Paradigms of psychiatry: eclecticism and its discontents. Curr. Opin. Psychiatry, 2006, 19(6), 619-624.
[http://dx.doi.org/10.1097/01.yco.0000245751.98749.52] [PMID: 17012942]
[108]
Cuijpers, P.; Vogelzangs, N.; Twisk, J.; Kleiboer, A.; Li, J.; Penninx, B.W. Comprehensive meta-analysis of excess mortality in depression in the general community versus patients with specific illnesses. Am. J. Psychiatry, 2014, 171(4), 453-462.
[http://dx.doi.org/10.1176/appi.ajp.2013.13030325] [PMID: 24434956]
[109]
Pratt, L.A.; Druss, B.G.; Manderscheid, R.W.; Walker, E.R. Excess mortality due to depression and anxiety in the United States: results from a nationally representative survey. Gen. Hosp. Psychiatry, 2016, 39, 39-45.
[http://dx.doi.org/10.1016/j.genhosppsych.2015.12.003] [PMID: 26791259]
[110]
Walker, E.R.; Pratt, L.A.; Schoenborn, C.A.; Druss, B.G. Excess mortality among people who report lifetime use of illegal drugs in the United States: a 20-year follow-up of a nationally representative survey. Drug Alcohol Depend., 2017, 171, 31-38.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.11.026] [PMID: 28012429]
[111]
Chang, C.K.; Hayes, R.D.; Broadbent, M.T.M.; Hotopf, M.; Davies, E.; Møller, H.; Stewart, R. A cohort study on mental disorders, stage of cancer at diagnosis and subsequent survival. BMJ Open, 2014, 4(1)e004295
[http://dx.doi.org/10.1136/bmjopen-2013-004295] [PMID: 24477317]
[112]
Westman, J.; Hällgren, J.; Wahlbeck, K.; Erlinge, D.; Alfredsson, L.; Ösby, U. Cardiovascular mortality in bipolar disorder: a population-based cohort study in Sweden. BMJ Open, 2013, 3(4)e002373
[http://dx.doi.org/10.1136/bmjopen-2012-002373] [PMID: 23604348]
[113]
Conway, K.P.; Swendsen, J.; Husky, M.M.; He, J.P.; Merikangas, K.R. Association of lifetime mental disorders and subsequent alcohol and illicit drug use: results from the national comorbidity survey-adolescent supplement. J. Am. Acad. Child Adolesc. Psychiatry, 2016, 55(4), 280-288.
[http://dx.doi.org/10.1016/j.jaac.2016.01.006] [PMID: 27015718]
[114]
Walker, E.R.; Druss, B.G. Mental and addictive disorders and medical comorbidities. Curr. Psychiatry Rep., 2018, 20(10), 86.
[http://dx.doi.org/10.1007/s11920-018-0956-1] [PMID: 30155583]
[115]
Talevi, D.; Imburgia, L.; Luperini, C.; Zancla, A.; Collazzoni, A.; Rossi, R.; Pacitti, F.; Rossi, A. Interpersonal violence: identification of associated features in a clinical sample. Child Abuse Negl., 2018, 86, 349-357.
[http://dx.doi.org/10.1016/j.chiabu.2018.08.017] [PMID: 30220425]
[116]
Quartini, A.; Pacitti, F.; Bersani, G.; Iannitelli, A. From adolescent neurogenesis to schizophrenia: opportunities: challenges and promising interventions. Biomed. Rev., 2017, 28, 62-69.
[http://dx.doi.org/10.14748/bmr.v28.4452]
[117]
Gioiosa, L.; Iannitelli, A.; Aloe, L. Stress, anxiety and schizophrenia and neurotrophic factors: the pioneer studies with nerve growth factor. Riv. Psichiatr., 2009, 44(2), 88-94.
[http://dx.doi.org/10.1708/420.4978.20066809] [PMID: 20066809]
[118]
Iwabuchi, S.J.; Peng, D.; Fang, Y.; Jiang, K.; Liddle, E.B.; Liddle, P.F.; Palaniyappan, L. Alterations in effective connectivity anchored on the insula in major depressive disorder. Eur. Neuropsychopharmacol., 2014, 24(11), 1784-1792.
[http://dx.doi.org/10.1016/j.euroneuro.2014.08.005] [PMID: 25219936]
[119]
Rao, S.; Martínez-Cengotitabengoa, M.; Yao, Y.; Guo, Z.; Xu, Q.; Li, S.; Zhou, X.; Zhang, F. Peripheral blood nerve growth factor levels in major psychiatric disorders. J. Psychiatr. Res., 2017, 86, 39-45.
[http://dx.doi.org/10.1016/j.jpsychires.2016.11.012] [PMID: 27898323]
[120]
Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry, 2013, 54(7), 597-606.
[http://dx.doi.org/10.1001/archpsyc.1997.01830190015002] [PMID: 9236543]
[121]
Martino, M.; Rocchi, G.; Escelsior, A.; Contini, P.; Colicchio, S.; de Berardis, D.; Amore, M.; Fornaro, P.; Fornaro, M. NGF serum levels variations in major depressed patients receiving duloxetine. Psychoneuroendocrinology, 2013, 38(9), 1824-1828.
[http://dx.doi.org/10.1016/j.psyneuen.2013.02.009] [PMID: 23507186]
[122]
Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Cipriano, A.L.; Panizzutti, B.S.; Stertz, L.; Lersch, C.; Kapczinski, F.; Quevedo, J. Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochem. Res., 2011, 36(3), 460-466.
[http://dx.doi.org/10.1007/s11064-010-0364-3] [PMID: 21161589]
[123]
Campos, A.C.; Vaz, G.N.; Saito, V.M.; Teixeira, A.L. Further evidence for the role of interferon-gamma on anxiety- and depressive-like behaviors: involvement of hippocampal neurogenesis and NGF production. Neurosci. Lett., 2014, 578, 100-105.
[http://dx.doi.org/10.1016/j.neulet.2014.06.039] [PMID: 24993299]
[126]
James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[127]
Bersani, G.; Iannitelli, A.; Fiore, M.; Angelucci, F.; Aloe, L. Data and hypotheses on the role of nerve growth factor and other neurotrophins in psychiatric disorders. Med. Hypotheses, 2000, 55(3), 199-207.
[http://dx.doi.org/10.1054/mehy.1999.1044] [PMID: 10985909]
[128]
Aloe, L.; Iannitelli, A.; Angelucci, F.; Bersani, G.; Fiore, M. Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav. Pharmacol., 2000, 11(3-4), 235-242.
[http://dx.doi.org/10.1097/00008877-200006000-00007] [PMID: 11103878]
[129]
Angelucci, F.; Brenè, S.; Mathé, A.A. BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry, 2005, 10(4), 345-352.
[http://dx.doi.org/10.1038/sj.mp.4001637] [PMID: 15655562]
[130]
Fernandes, B.S.; Steiner, J.; Berk, M.; Molendijk, M.L.; Gonzalez-Pinto, A.; Turck, C.W.; Nardin, P.; Gonçalves, C.A. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol. Psychiatry, 2015, 20(9), 1108-1119.
[http://dx.doi.org/10.1038/mp.2014.117] [PMID: 25266124]
[131]
Weickert, C.S.; Hyde, T.M.; Lipska, B.K.; Herman, M.M.; Weinberger, D.R.; Kleinman, J.E. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol. Psychiatry, 2003, 8(6), 592-610.
[http://dx.doi.org/10.1038/sj.mp.4001308] [PMID: 12851636]
[132]
Thome, J.; Foley, P.; Riederer, P. Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J. Neural Transm. (Vienna), 1998, 105(1), 85-100.
[http://dx.doi.org/10.1007/s007020050040] [PMID: 9588763]
[133]
Iannitelli, A.; Quartini, A.; Tirassa, P.; Bersani, G. Schizophrenia and neurogenesis: a stem cell approach. Neurosci. Biobehav. Rev., 2017, 80, 414-442.
[http://dx.doi.org/10.1016/j.neubiorev.2017.06.010] [PMID: 28645779]
[134]
Ajami, A.; Hosseini, S.H.; Taghipour, M.; Khalilian, A. Changes in serum levels of brain derived neurotrophic factor and nerve growth factor-beta in schizophrenic patients before and after treatment. Scand. J. Immunol., 2014, 80(1), 36-42.
[http://dx.doi.org/10.1111/sji.12158] [PMID: 24498860]
[135]
Kale, A.; Joshi, S.; Pillai, A.; Naphade, N.; Raju, M.; Nasrallah, H.; Mahadik, S.P. Reduced cerebrospinal fluid and plasma nerve growth factor in drug-naïve psychotic patients. Schizophr. Res., 2009, 115(2-3), 209-214.
[http://dx.doi.org/10.1016/j.schres.2009.07.022] [PMID: 19713082]
[136]
Zakharyan, R.; Atshemyan, S.; Gevorgyan, A.; Boyajyan, A. Nerve growth factor and its receptor in schizophrenia. BBA Clin., 2014, 1, 24-29.
[http://dx.doi.org/10.1016/j.bbacli.2014.05.001] [PMID: 26675984]
[137]
Neugebauer, K.; Hammans, C.; Wensing, T.; Kumar, V.; Grodd, W.; Mevissen, L.; Sternkopf, M.A.; Novakovic, A.; Abel, T.; Habel, U.; Nickl-Jockschat, T. Nerve growth factor serum levels are associated with regional gray matter volume differences in schizophrenia patients. Front. Psychiatry, 2019, 10, 275.
[http://dx.doi.org/10.3389/fpsyt.2019.00275] [PMID: 31105606]
[138]
Xiong, P.; Zeng, Y.; Wu, Q.; Huang, H. D.X.; Zainal, H.; Xu, X.; Wan, J.; Xu, F.; Lu, J. Combining serum protein concentrations to diagnose schizophrenia: a preliminary exploration. J. Clin. Psychiatry, 2014, 75(8), e794-e801.
[http://dx.doi.org/10.4088/JCP.13m08772] [PMID: 25191916]
[139]
Parnanzone, S.; Serrone, D.; Rossetti, M.C.; D’Onofrio, S.; Splendiani, A.; Micelli, V.; Rossi, A.; Pacitti, F. Alterations of cerebral white matter structure in psychosis and their clinical correlations: a systematic review of diffusion tensor imaging studies. Riv. Psichiatr., 2017, 52(2), 49-66.
[http://dx.doi.org/10.1708/2679.27441.28492575] [PMID: 28492575]
[140]
Bersani, G.; Quartini, A.; Paolemili, M.; Clemente, R.; Iannitelli, A.; Di Biasi, C.; Gualdi, G. Neurological soft signs and corpus callosum morphology in schizophrenia. Neurosci. Lett., 2011, 499(3), 170-174.
[http://dx.doi.org/10.1016/j.neulet.2011.05.046] [PMID: 21645589]
[141]
Bersani, G.; Iannitelli, A.; Maselli, P.; Pancheri, P.; Aloe, L.; Angelucci, F.; Alleva, E. Low nerve growth factor plasma levels in schizophrenic patients: a preliminary study. Schizophr. Res., 1999, 37(2), 201-203.
[PMID: 10374657]
[142]
Canever, L.; Freire, T.G.; Mastella, G.A.; Damázio, L.; Gomes, S.; Fachim, I.; Michels, C.; Carvalho, G.; Godói, A.K.; Peterle, B.R.; Gava, F.F.; Valvassori, S.S.; Budni, J.; Quevedo, J.; Zugno, A.I. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 52-64.
[http://dx.doi.org/10.1016/j.pnpbp.2018.05.014] [PMID: 29782958]
[143]
Di Fausto, V.; Fiore, M.; Aloe, L. Exposure in fetus of methylazoxymethanol in the rat alters brain neurotrophins’ levels and brain cells’ proliferation. Neurotoxicol. Teratol., 2007, 29(2), 273-281.
[http://dx.doi.org/10.1016/j.ntt.2006.10.007] [PMID: 17142008]
[144]
Fiore, M.; Grace, A.A.; Korf, J.; Stampachiacchiere, B.; Aloe, L. Impaired brain development in the rat following prenatal exposure to methylazoxymethanol acetate at gestational day 17 and neurotrophin distribution. Neuroreport, 2004, 15(11), 1791-1795.
[http://dx.doi.org/10.1097/01.wnr.0000135934.03635.6a] [PMID: 15257149]
[145]
Fiore, M.; Korf, J.; Antonelli, A.; Talamini, L.; Aloe, L. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol. Teratol., 2002, 24(2), 179-191.
[http://dx.doi.org/10.1016/S0892-0362(01)00214-8] [PMID: 11943506]
[146]
Fiore, M.; Aloe, L.; Westenbroek, C.; Amendola, T.; Antonelli, A.; Korf, J. Bromodeoxyuridine and methylazoxymethanol exposure during brain development affects behavior in rats: consideration for a role of nerve growth factor and brain derived neurotrophic factor. Neurosci. Lett., 2001, 309(2), 113-116.
[http://dx.doi.org/10.1016/S0304-3940(01)02045-6] [PMID: 11502358]
[147]
Fiore, M.; Talamini, L.; Angelucci, F.; Koch, T.; Aloe, L.; Korf, J. Prenatal methylazoxymethanol acetate alters behavior and brain NGF levels in young rats: a possible correlation with the development of schizophrenia-like deficits. Neuropharmacology, 1999, 38(6), 857-869.
[http://dx.doi.org/10.1016/S0028-3908(99)00007-6] [PMID: 10465689]
[148]
Fiore, M.; Di Fausto, V.; Iannitelli, A.; Aloe, L. Clozapine or haloperidol in rats prenatally exposed to methylazoxymethanol, a compound inducing entorhinal-hippocampal deficits, alter brain and blood neurotrophinsćoncentrations. Ann. Ist. Super. Sanita, 2008, 44(2), 167-177.
[PMID: 18660566]
[149]
Harrison, P.J.; Geddes, J.R.; Tunbridge, E.M. The emerging neurobiology of bipolar disorder. Trends Neurosci., 2018, 41(1), 18-30.
[http://dx.doi.org/10.1016/j.tins.2017.10.006] [PMID: 29169634]
[150]
Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Lopez-Virgen, V.; Gomez-Plascencia, J.; Ramos-Zuniga, R.; Gonzalez-Perez, O. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev., 2016, 32, 85-96.
[http://dx.doi.org/10.1016/j.cytogfr.2016.08.004] [PMID: 27618303]
[151]
Spahis, S.; Borys, J-M.; Levy, E. Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxid. Redox Signal., 2017, 26(9), 445-461.
[http://dx.doi.org/10.1089/ars.2016.6756] [PMID: 27302002]
[152]
Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7539::AID-DIA6683.0.CO;2-S] [PMID: 9686693]
[153]
Santini, I.; Stratta, P.; D’Onofrio, S.; De Lauretis, I.; Santarelli, V.; Pacitti, F.; Rossi, A. The metabolic syndrome in an Italian psychiatric sample: a retrospective chart review of inpatients treated with antipsychotics. Riv. Psichiatr., 2016, 51(1), 37-42.
[http://dx.doi.org/10.1708/2168.23452] [PMID: 27030348]
[154]
Lakka, H.M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA, 2002, 288(21), 2709-2716.
[http://dx.doi.org/10.1001/jama.288.21.2709] [PMID: 12460094]
[155]
Laaksonen, D.E.; Lakka, H.M.; Niskanen, L.K.; Kaplan, G.A.; Salonen, J.T.; Lakka, T.A. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am. J. Epidemiol., 2002, 156(11), 1070-1077.
[http://dx.doi.org/10.1093/aje/kwf145] [PMID: 12446265]
[156]
Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissén, M.; Taskinen, M.R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care, 2001, 24(4), 683-689.
[http://dx.doi.org/10.2337/diacare.24.4.683] [PMID: 11315831]
[157]
Chaldakov, G.N.; Fiore, M.; Hristova, M.G.; Aloe, L. metabotrophic potential of neurotrophins: implication in obesity and related diseases? Med. Sci. Monit., 2003, 9(10), HY19-HY21.
[PMID: 14523335]
[158]
Chaldakov, G.N.; Stankulov, I.S.; Fiore, M.; Ghenev, P.I.; Aloe, L. Nerve growth factor levels and mast cell distribution in human coronary atherosclerosis. Atherosclerosis, 2001, 159(1), 57-66.
[http://dx.doi.org/10.1016/S0021-9150(01)00488-9] [PMID: 11689207]
[159]
Sornelli, F.; Fiore, M.; Chaldakov, G.N.; Aloe, L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen. Physiol. Biophys., 2009, 28(Spec No), 179-183.
[PMID: 19893098]
[160]
Chaldakov, G.; Fiore, M.; Tonchev, A.; Aloe, L. Adipopharmacology, a novel drug discovery approach: a metabotrophic perspective. Lett. Drug Des. Discov., 2008, 3(7), 503-505.
[http://dx.doi.org/10.2174/157018006778194835]
[161]
Bonomini, F.; Rodella, L.F.; Rezzani, R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis., 2015, 6(2), 109-120.
[http://dx.doi.org/10.14336/AD.2014.0305] [PMID: 25821639]
[162]
Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci., 2009, 84(21-22), 705-712.
[http://dx.doi.org/10.1016/j.lfs.2009.02.026] [PMID: 19281826]
[163]
Palmieri, V.O.; Grattagliano, I.; Portincasa, P.; Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr., 2006, 136(12), 3022-3026.
[http://dx.doi.org/10.1093/jn/136.12.3022] [PMID: 17116714]
[164]
Armutcu, F.; Ataymen, M.; Atmaca, H.; Gurel, A. Oxidative stress markers, C-reactive protein and heat shock protein 70 levels in subjects with metabolic syndrome. Clin. Chem. Lab. Med., 2008, 46(6), 785-790.
[http://dx.doi.org/10.1515/CCLM.2008.166] [PMID: 18601599]
[165]
Zelzer, S.; Fuchs, N.; Almer, G.; Raggam, R.B.; Prüller, F.; Truschnig-Wilders, M.; Schnedl, W.; Horejsi, R.; Möller, R.; Weghuber, D.; Ille, R.; Mangge, H. High density lipoprotein cholesterol level is a robust predictor of lipid peroxidation irrespective of gender, age, obesity, and inflammatory or metabolic biomarkers. Clin. Chim. Acta, 2011, 412(15-16), 1345-1349.
[http://dx.doi.org/10.1016/j.cca.2011.03.031] [PMID: 21515245]
[166]
Aschbacher, K.; Kornfeld, S.; Picard, M.; Puterman, E.; Havel, P.J.; Stanhope, K.; Lustig, R.H.; Epel, E. Chronic stress increases vulnerability to diet-related abdominal fat, oxidative stress, and metabolic risk. Psychoneuroendocrinology, 2014, 46, 14-22.
[http://dx.doi.org/10.1016/j.psyneuen.2014.04.003] [PMID: 24882154]
[167]
Pyykkönen, A.J.; Räikkönen, K.; Tuomi, T.; Eriksson, J.G.; Groop, L.; Isomaa, B. Stressful life events and the metabolic syndrome: the prevalence, prediction and prevention of diabetes (PPP)-Botnia Study. Diabetes Care, 2010, 33(2), 378-384.
[http://dx.doi.org/10.2337/dc09-1027] [PMID: 19880581]
[168]
Steptoe, A.; Kivimäki, M. Stress and cardiovascular disease: an update on current knowledge. Annu. Rev. Public Health, 2013, 34, 337-354.
[http://dx.doi.org/10.1146/annurev-publhealth-031912-114452] [PMID: 23297662]
[169]
Magnavita, N.; Fileni, A. Work stress and metabolic syndrome in radiologists: first evidence. Radiol. Med. (Torino), 2014, 119(2), 142-148.
[http://dx.doi.org/10.1007/s11547-013-0329-0] [PMID: 24297580]
[170]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: a novel component of neuroendocrinology. Cell Biol. Int., 2010, 34(10), 1051-1053.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[171]
Aloe, L.; Fiore, M. Submandibular glands, nerve growth factor and neuroinflammatory responses in rodents. Biomed. Rev., 1998, 9, 93-99.
[http://dx.doi.org/10.14748/bmr.v9.139]
[172]
Fiore, M.; Clayton, N.S.; Pistillo, L.; Angelucci, F.; Alleva, E.; Aloe, L. Song behavior, NGF level and NPY distribution in the brain of adult male zebra finches. Behav. Brain Res., 1999, 101(1), 85-92.
[http://dx.doi.org/10.1016/S0166-4328(98)00143-0] [PMID: 10342402]
[173]
Chaldakov, G.N.; Fiore, M.; Stankulov, I.S.; Hristova, M.; Antonelli, A.; Manni, L.; Ghenev, P.I.; Angelucci, F.; Aloe, L. NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome. Arch. Physiol. Biochem., 2001, 109(4), 357-360.
[http://dx.doi.org/10.1076/apab.109.4.357.4249] [PMID: 11935372]
[174]
Hristova, M.; Aloe, L. Metabolic syndrome--neurotrophic hypothesis. Med. Hypotheses, 2006, 66(3), 545-549.
[http://dx.doi.org/10.1016/j.mehy.2005.08.055] [PMID: 16298496]
[175]
Chaldakov, G.N.; Fiore, M.; Ghenev, P.I.; Beltowski, J.; Ranćić, G.; Tunçel, N.; Aloe, L. Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front. Immunol., 2014, 5, 130.
[http://dx.doi.org/10.3389/fimmu.2014.00130] [PMID: 24782857]
[176]
Chaldakov, G. The metabotrophic NGF and BDNF: an emerging concept. Arch. Ital. Biol., 2011, 149(2), 257-263.
[http://dx.doi.org/10.4449/aib.v149i2.1366] [PMID: 21701997]
[177]
Sun, Q.; Tang, D.D.; Yin, E.G.; Wei, L.L.; Chen, P.; Deng, S.P.; Tu, L.L. Diagnostic significance of serum levels of nerve growth factor and brain derived neurotrophic factor in diabetic peripheral neuropathy. Med. Sci. Monit., 2018, 24, 5943-5950.
[http://dx.doi.org/10.12659/MSM.909449] [PMID: 30145601]
[178]
Coriale, G.; Gencarelli, S.; Battagliese, G.; Delfino, D.; Fiorentino, D.; Petrella, C.; Greco, A.; Ralli, M.; Attilia, M.L.; Messina, M.P.; Ferraguti, G.; Fiore, M.; Ceccanti, M.; Messina, M.P. Physiological responses to induced stress in individuals affected by alcohol use disorder with dual diagnosis and alexithymia. Clin. Ter., 2020, 171(2), e120-e129.
[http://dx.doi.org/10.7417/CT.2020.2201.32141483] [PMID: 32141483]
[179]
Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[180]
Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[181]
Eisfeld, J. International statistical classification of diseases and related health problems. TSQ, 2014, 1(1-2), 107-110.
[http://dx.doi.org/10.1215/23289252-2399740]
[182]
Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet, 2019, 394(10200), 781-792.
[http://dx.doi.org/10.1016/S0140-6736(19)31775-1] [PMID: 31478502]
[183]
Martellucci, S.; Ralli, M.; Attanasio, G.; Russo, F.Y.; Marcelli, V.; Greco, A.; Gallo, A.; Fiore, M.; Petrella, C.; Ferraguti, G.; Ceccanti, M.; de Vincentiis, M. Alcohol binge-drinking damage on the vestibulo-oculomotor reflex. Eur. Arch. Otorhinolaryngol., 2020, 278(1), 41-48.
[http://dx.doi.org/10.1007/s00405-020-06052-1] [PMID: 32449024]
[184]
Schwarzinger, M.; Thiébaut, S.P.; Baillot, S.; Mallet, V.; Rehm, J. Alcohol use disorders and associated chronic disease - a national retrospective cohort study from France. BMC Public Health, 2017, 18(1), 43.
[http://dx.doi.org/10.1186/s12889-017-4587-y] [PMID: 28732487]
[185]
Samokhvalov, A.V.; Popova, S.; Room, R.; Ramonas, M.; Rehm, J. Disability associated with alcohol abuse and dependence. Alcohol. Clin. Exp. Res., 2010, 34(11), 1871-1878.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01275.x] [PMID: 20662803]
[186]
Piano, M.R. Alcohol’s effects on the cardiovascular system. Alcohol Res., 2017, 38(2), 219-241.
[PMID: 28988575]
[187]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M.; Ciafrè, S.; Carito, V.; Ferraguti, G. How alcohol drinking affects our genes: an epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[188]
Ciafr, Ã. S.; Carito, V.; Tirassa, P.; Ferraguti, G.; Attilia, M.L.; Ciolli, P.; Messina, M.P.; Ceccanti, M.; Fiore, M. Ethanol consumption and innate neuroimmunity. Biomed. Rev., 2018, 28, 49-61.
[http://dx.doi.org/10.14748/bmr.v28.4451]
[189]
Ciafre, S.; Fiore, M.; Ceccanti, M.; Messina, M.P.; Tirassa, P.; Carito, V. Role of neuropeptide tyrosine (NPY) in ethanol addiction. Biomed. Rev., 2016, 27, 27-39.
[http://dx.doi.org/10.14748/bmr.v27.2110]
[190]
Koob, G.F.; Buck, C.L.; Cohen, A.; Edwards, S.; Park, P.E.; Schlosburg, J.E.; Schmeichel, B.; Vendruscolo, L.F.; Wade, C.L.; Whitfield, T.W. 2014.
[191]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35(1), 217-238.
[http://dx.doi.org/10.1038/npp.2009.110] [PMID: 19710631]
[192]
Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106.
[http://dx.doi.org/10.1708/2925.29410.29912210] [PMID: 29912210]
[193]
Ferraguti, G.; Pascale, E.; Lucarelli, M. Alcohol addiction: a molecular biology perspective. Curr. Med. Chem., 2015, 22(6), 670-684.
[http://dx.doi.org/10.2174/0929867321666141229103158] [PMID: 25544474]
[194]
Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev., 2020, 118, 654-668.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.018] [PMID: 32976915]
[195]
Bolton, J.M.; Robinson, J.; Sareen, J. Self-medication of mood disorders with alcohol and drugs in the national epidemiologic survey on alcohol and related conditions. J. Affect. Disord., 2009, 115(3), 367-375.
[http://dx.doi.org/10.1016/j.jad.2008.10.003] [PMID: 19004504]
[196]
Becker, H.C. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology, 2017, 122, 115-126.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.028] [PMID: 28431971]
[197]
Sinha, R. The role of stress in addiction relapse. Curr. Psychiatry Rep., 2007, 9(5), 388-395.
[http://dx.doi.org/10.1007/s11920-007-0050-6] [PMID: 17915078]
[198]
Enoch, M.A. The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology (Berl.), 2011, 214(1), 17-31.
[http://dx.doi.org/10.1007/s00213-010-1916-6] [PMID: 20596857]
[199]
Müller, M.; Vandeleur, C.; Rodgers, S.; Rössler, W.; Castelao, E.; Preisig, M.; Ajdacic-Gross, V. Childhood adversities as specific contributors to the co-occurrence of posttraumatic stress and alcohol use disorders. Psychiatry Res., 2015, 228(3), 251-256.
[http://dx.doi.org/10.1016/j.psychres.2015.06.034] [PMID: 26163721]
[200]
Hansson, A.C.; Rimondini, R.; Neznanova, O.; Sommer, W.H.; Heilig, M. Neuroplasticity in brain reward circuitry following a history of ethanol dependence. Eur. J. Neurosci., 2008, 27(8), 1912-1922.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06159.x] [PMID: 18412612]
[201]
Becker, H.C. Animal models of excessive alcohol consumption in rodents. Curr. Top. Behav. Neurosci., 2013, 13, 355-377.
[http://dx.doi.org/10.1007/978-3-642-28720-6_203] [PMID: 22371267]
[202]
Koob, G.F.; Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol., 2008, 59, 29-53.
[http://dx.doi.org/10.1146/annurev.psych.59.103006.093548] [PMID: 18154498]
[203]
Vengeliene, V.; Bilbao, A.; Molander, A.; Spanagel, R. Neuropharmacology of alcohol addiction. Br. J. Pharmacol., 2008, 154(2), 299-315.
[http://dx.doi.org/10.1038/bjp.2008.30] [PMID: 18311194]
[204]
Fiore, M.; Messina, M.P.; Petrella, C.; D’Angelo, A.; Greco, A.; Ralli, M.; Ferraguti, G.; Tarani, L.; Vitali, M.; Ceccanti, M. Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: impact on the mediterranean diet. J. Funct. Foods, 2020, 71104012
[http://dx.doi.org/10.1016/j.jff.2020.104012]
[205]
Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R. Oxidative stress inhibition by resveratrol in alcohol dependent mice. Nutrition, 2020, 79-80110783
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[206]
Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[207]
Sinson, G.; Perri, B.R.; Trojanowski, J.Q.; Flamm, E.S.; McIntosh, T.K. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J. Neurosurg., 1997, 86(3), 511-518.
[http://dx.doi.org/10.3171/jns.1997.86.3.0511] [PMID: 9046309]
[208]
Seabold, G.K.; Luo, J.; Miller, M.W. Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons. Brain Res. Dev. Brain Res., 1998, 108(1-2), 139-145.
[http://dx.doi.org/10.1016/S0165-3806(98)00043-1] [PMID: 9693792]
[209]
Heaton, M.B.; Mitchell, J.J.; Paiva, M. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum. J. Neurobiol., 2000, 45(2), 95-104.
[http://dx.doi.org/10.1002/1097-4695(20001105)45:295:AID-NEU43.0.CO;2-Y] [PMID: 11018771]
[210]
Moore, D.B.; Madorsky, I.; Paiva, M.; Barrow Heaton, M. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. J. Neurobiol., 2004, 60(1), 101-113.
[http://dx.doi.org/10.1002/neu.20009] [PMID: 15188276]
[211]
Lee, B.C.; Choi, I.G.; Kim, Y.K.; Ham, B.J.; Yang, B.H.; Roh, S.; Choi, J.; Lee, J.S.; Oh, D.Y.; Chai, Y.G. Relation between plasma brain-derived neurotrophic factor and nerve growth factor in the male patients with alcohol dependence. Alcohol, 2009, 43(4), 265-269.
[http://dx.doi.org/10.1016/j.alcohol.2009.04.003] [PMID: 19560628]
[212]
Köhler, S.; Klimke, S.; Hellweg, R.; Lang, U.E. Serum brain-derived neurotrophic factor and nerve growth factor concentrations change after alcohol withdrawal: preliminary data of a case-control comparison. Eur. Addict. Res., 2013, 19(2), 98-104.
[http://dx.doi.org/10.1159/000342334] [PMID: 23128606]
[213]
Heberlein, A.; Muschler, M.; Frieling, H.; Behr, M.; Eberlein, C.; Wilhelm, J.; Gröschl, M.; Kornhuber, J.; Bleich, S.; Hillemacher, T. Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addict. Biol., 2013, 18(3), 508-510.
[http://dx.doi.org/10.1111/j.1369-1600.2010.00307.x] [PMID: 21392176]
[214]
Patrick, M.E.; Schulenberg, J.E.; Martz, M.E.; Maggs, J.L.; O’Malley, P.M.; Johnston, L.D. Extreme binge drinking among 12th-grade students in the United States: prevalence and predictors. JAMA Pediatr., 2013, 167(11), 1019-1025.
[http://dx.doi.org/10.1001/jamapediatrics.2013.2392] [PMID: 24042318]
[215]
Ardic-Pulas, T. The binge drinking. L’Aide-Soignante, 2016, 30(179), 24-25.
[http://dx.doi.org/10.1016/j.aidsoi.2016.07.008]
[216]
Lobach, K.S. Binge drinking and associated health risk behaviors among high school students. Pediatrics, 2007, 113(1), 76-85.
[http://dx.doi.org/10.1542/peds.2006-1517] [PMID: 17200273]
[217]
Heberlein, A.; Bleich, S.; Bayerlein, K.; Frieling, H.; Gröschl, M.; Kornhuber, J.; Hillemacher, T. NGF plasma levels increase due to alcohol intoxication and decrease during withdrawal. Psychoneuroendocrinology, 2008, 33(7), 999-1003.
[http://dx.doi.org/10.1016/j.psyneuen.2008.05.011] [PMID: 18639986]
[218]
Bae, H.; Ra, Y.; Han, C.; Kim, D.J. Decreased serum level of NGF in alcohol-dependent patients with declined executive function. Neuropsychiatr. Dis. Treat., 2014, 10, 2153-2157.
[http://dx.doi.org/10.2147/NDT.S72067] [PMID: 25419139]
[219]
Aloe, L.; Tuveri, M.A.; Guerra, G.; Pinna, L.; Tirassa, P.; Micera, A.; Alleva, E. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol. Clin. Exp. Res., 1996, 20(3), 462-465.
[http://dx.doi.org/10.1111/j.1530-0277.1996.tb01076.x] [PMID: 8727238]
[220]
Messina, M.P.; D’Angelo, A.; Battagliese, G.; Coriale, G.; Tarani, L.; Pichini, S.; Rasio, D.; Parlapiano, G.; Fiore, M.; Petrella, C.; Vitali, M.; Ferraguti, G.; Ceccanti, M. Fetal alcohol spectrum disorders awareness in health professionals: implications for psychiatry. Riv. Psichiatr., 2020, 55(2), 79-89.
[http://dx.doi.org/10.1708/3333.33022.32202545] [PMID: 32202545]
[221]
Carito, V.; Parlapiano, G.; Rasio, D.; Paparella, R.; Paolucci, V.; Ferraguti, G.; Greco, A.; Ralli, M.; Pichini, S.; Fiore, M.; Coriale, G.; Ceccanti, M.; Tarani, L. Fetal alcohol spectrum disorders in pediatrics. FASD and the pediatrician. Biomed. Rev., 2018, 29, 27-35.
[http://dx.doi.org/10.14748/bmr.v29.5847]
[222]
Nulman, I.; Shulman, T.; Liu, F. Fetal alcohol spectrum disorder.Handbook of Developmental Neurotoxicology; Slikker, W., Jr; Paule, M.G.; Wang, C., Eds.; Elsevier: Amsterdam, 2018, pp. 427-437.
[http://dx.doi.org/10.1016/B978-0-12-809405-1.00038-9]
[223]
Coriale, G.; Fiorentino, D.; Di Lauro, F.; Marchitelli, R.; Scalese, B.; Fiore, M.; Maviglia, M.; Ceccanti, M. Fetal alcohol spectrum disorder (FASD): neurobehavioral profile, indications for diagnosis and treatment. Riv. Psichiatr., 2013, 48(5), 359-369.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[224]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[225]
Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3)e12724
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[226]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60.
[http://dx.doi.org/10.2174/1570159X18666200429003239] [PMID: 32348226]
[227]
Carito, V.; Ceccanti, M.; Chaldakov, G.; Tarani, L.; De Nicolò, S.; Ciafrè, S.; Tirassa, P.; Fiore, M. Polyphenols, nerve growth factor, brain-derived neurotrophic factor, and the brain.Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease (Prevention Therapy); Watson, R.R.; Preedy, V.M., Eds.; Elsevier: Amsterdam, 2015, pp. 65-71.
[http://dx.doi.org/10.1016/B978-0-12-411462-3.00007-2]
[228]
De Nicolò, S.; Carito, V.; Fiore, M.; Laviola, G. Aberrant behavioral and neurobiologic profiles in rodents exposed to ethanol or red wine early in development. Curr. Dev. Disord. Rep., 2014, 1, 173-180.
[http://dx.doi.org/10.1007/s40474-014-0023-5]
[229]
Aloe, L.; Tirassa, P. The effect of long-term alcohol intake on brain NGF-target cells of aged rats. Alcohol, 1992, 9(4), 299-304.
[http://dx.doi.org/10.1016/0741-8329(92)90070-Q] [PMID: 1322141]
[230]
Fiore, M.; Laviola, G.; Aloe, L.; di Fausto, V.; Mancinelli, R.; Ceccanti, M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology, 2009, 30(1), 59-71.
[http://dx.doi.org/10.1016/j.neuro.2008.11.009] [PMID: 19100286]
[231]
Angelucci, F.; Fiore, M.; Cozzari, C.; Aloe, L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: a preliminary study. Neurotoxicol. Teratol., 1999, 21(4), 415-425.
[http://dx.doi.org/10.1016/S0892-0362(99)00005-7] [PMID: 10440485]
[232]
Fiore, M.; Mancinelli, R.; Aloe, L.; Laviola, G.; Sornelli, F.; Vitali, M.; Ceccanti, M. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol. Lett., 2009, 188(3), 208-213.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.013] [PMID: 19397965]
[233]
Ceccanti, M.; Mancinelli, R.; Tirassa, P.; Laviola, G.; Rossi, S.; Romeo, M.; Fiore, M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol. Aging, 2012, 33(2), 359-367.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[234]
Ceccanti, M.; De Nicolò, S.; Mancinelli, R.; Chaldakov, G.; Carito, V.; Ceccanti, M.; Laviola, G.; Tirassa, P.; Fiore, M. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann. Ist. Super. Sanita, 2013, 49(4), 383-390.
[http://dx.doi.org/10.4415/ANN-13-04-11.24334784] [PMID: 24334784]
[235]
Abel, E. Paternal contribution to fetal alcohol syndrome. Addict. Biol., 2004, 9(2), 127-133.
[http://dx.doi.org/10.1080/13556210410001716980] [PMID: 15223537]
[236]
Ceccanti, M.; Coccurello, R.; Carito, V.; Ciafrè, S.; Ferraguti, G.; Giacovazzo, G.; Mancinelli, R.; Tirassa, P.; Chaldakov, G.N.; Pascale, E.; Ceccanti, M.; Codazzo, C.; Fiore, M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict. Biol., 2016, 21(4), 776-787.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy