Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy

Author(s): Hadis Fathizadeh*, Mahmood Saffari, Davoud Esmaeili, Rezvan Moniri and Hossein Samadi Kafil

Volume 21, Issue 3, 2021

Published on: 17 August, 2020

Page: [211 - 220] Pages: 10

DOI: 10.2174/1566524020999200817113730

Price: $65

Abstract

Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.

Keywords: Bacteriocins, Cancer, Therapy, Tumor, bacteria, anticancer agent.

[1]
Fitzmaurice C, Abate D, Abbasi N, et al. Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019; 5(12): 1749-68.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[2]
Khan H, Mirzaei HR, Amiri A, Kupeli Akkol E, Ashhad Halimi SM, Mirzaei H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2021; 69: 24-42.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[3]
Pourhanifeh MH, Mohammadi R, Noruzi S, et al. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int 2019; 19: 157.
[http://dx.doi.org/10.1186/s12935-019-0870-6] [PMID: 31198406]
[4]
Mirzaei HR, Sahebkar A, Salehi R, et al. Boron neutron capture therapy: moving toward targeted cancer therapy. J Cancer Res Ther 2016; 12(2): 520-5.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[5]
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380(2): 413-23.
[http://dx.doi.org/10.1016/j.canlet.2016.07.001] [PMID: 27392648]
[6]
Mirzaei HR, Pourghadamyari H, Rahmati M, et al. Gene-knocked out chimeric antigen receptor (CAR) T cells: tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423: 95-104.
[http://dx.doi.org/10.1016/j.canlet.2018.03.010] [PMID: 29544719]
[7]
Mirzaei H, Salehi H, Oskuee RK, et al. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett 2018; 419: 30-9.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[8]
Moradian Tehrani R, Verdi J, Noureddini M, et al. Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol 2018; 233(5): 3831-45.
[http://dx.doi.org/10.1002/jcp.26094] [PMID: 28703313]
[9]
Mirzaei H, Sahebkar A, Sichani LS, et al. Therapeutic application of multipotent stem cells. J Cell Physiol 2018; 233(4): 2815-23.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[10]
Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther 2016; 23(9): 285-6.
[http://dx.doi.org/10.1038/cgt.2016.35] [PMID: 27650780]
[11]
Mirzaei H, Sahebkar A, Avan A, et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr Med Chem 2016; 23(5): 455-63.
[http://dx.doi.org/10.2174/0929867323666151217122033] [PMID: 26674785]
[12]
Mirzaei H, Sahebkar A, Jaafari MR, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther 2016; 23(2-3): 45-7.
[http://dx.doi.org/10.1038/cgt.2015.68] [PMID: 26742580]
[13]
Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G. Recent advances in cancer therapy: an overview. Curr Pharm Des 2010; 16(1): 3-10.
[http://dx.doi.org/10.2174/138161210789941847] [PMID: 20214614]
[14]
Akbari B, Farajnia S, Ahdi Khosroshahi S, et al. Immunotoxins in cancer therapy: review and update. Int Rev Immunol 2017; 36(4): 207-19.
[http://dx.doi.org/10.1080/08830185.2017.1284211] [PMID: 28282218]
[15]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[16]
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2017; 8(28): 46635-51.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[17]
Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Burns JL, Montelaro RC. Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens. Antimicrob Agents Chemother 2015; 59(2): 1329-33.
[http://dx.doi.org/10.1128/AAC.03937-14] [PMID: 25421473]
[18]
Phan TX, Nguyen VH, Duong MT, Hong Y, Choy HE, Min JJ. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol 2015; 59(11): 664-75.
[http://dx.doi.org/10.1111/1348-0421.12333] [PMID: 26500022]
[19]
Yaghoubi A, Khazaei M, Jalili S, et al. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874(1): 188388.
[http://dx.doi.org/10.1016/j.bbcan.2020.188388] [PMID: 32589907]
[20]
Dennison SR, Wallace J, Harris F, Phoenix DA. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept Lett 2005; 12(1): 31-9.
[http://dx.doi.org/10.2174/0929866053406084] [PMID: 15638801]
[21]
Guzmán-Rodríguez JJ, Ochoa-Zarzosa A. Plant antimicrobial peptides as potential anticancer agents 2015; 2015: 735087.http://dx.doi: 10.1155/2015/735087
[PMID: 2581533]
[22]
Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 2017; 49(1): 1-11.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.08.016] [PMID: 27773497]
[23]
Roudi R, Syn NL, Roudbary M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front Immunol 2017; 8: 1320.
[http://dx.doi.org/10.3389/fimmu.2017.01320] [PMID: 29081781]
[24]
Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL. Peptides with dual antimicrobial and anticancer activities. Front Chem 2017; 5: 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[25]
Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol 2015; 6: 272.
[http://dx.doi.org/10.3389/fphar.2015.00272] [PMID: 26617524]
[26]
Łukasiewicz K, Fol M. Microorganisms in the treatment of cancer: advantages and limitations. J Immunol Res 2018.: 20182397808.
[http://dx.doi.org/10.1155/2018/2397808] [PMID: 29682586]
[27]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[28]
Bignold LP, Coghlan B, Jersmann H. Cancer morphology, carcinogenesis and genetic instability: a background Cancer: cell structures, carcinogens and genomic instability. Springer 2006; pp. 1-24.
[http://dx.doi.org/10.1007/3-7643-7378-4_1]
[29]
GBD 2017 Colorectal Cancer Collaborators. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2019; 4(12): 913-33.
[http://dx.doi.org/10.1016/S2468-1253(19)30345-0] [PMID: 31648977]
[30]
Keshavarzi M, Darijani M, Momeni F, et al. Molecular imaging and oral cancer diagnosis and therapy. J Cell Biochem 2017; 118(10): 3055-60.
[http://dx.doi.org/10.1002/jcb.26042] [PMID: 28390191]
[31]
Keshavarzi M, Sorayayi S, Jafar Rezaei M, et al. MicroRNAs-based imaging techniques in cancer diagnosis and therapy. J Cell Biochem 2017; 118(12): 4121-8.
[http://dx.doi.org/10.1002/jcb.26012] [PMID: 28370207]
[32]
Saadatpour Z, Bjorklund G, Chirumbolo S, et al. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016.
[http://dx.doi.org/10.1038/cgt.2016.62] [PMID: 27857058]
[33]
Saadatpour Z, Rezaei A, Ebrahimnejad H, et al. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 2017; 24(1): 1-5.
[http://dx.doi.org/10.1038/cgt.2016.61] [PMID: 27834357]
[34]
Patyar S, Joshi R, Byrav DS, Prakash A, Medhi B, Das BK. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 2010; 17(1): 21.
[http://dx.doi.org/10.1186/1423-0127-17-21] [PMID: 20331869]
[35]
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol 2016; 11(11): 941-7.
[http://dx.doi.org/10.1038/nnano.2016.137] [PMID: 27525475]
[36]
Ansiaux R, Gallez B. Use of botulinum toxins in cancer therapy. Expert Opin Investig Drugs 2007; 16(2): 209-18.
[http://dx.doi.org/10.1517/13543784.16.2.209] [PMID: 17243940]
[37]
Zhao C-M, Hayakawa Y, Kodama Y, et al. Denervation suppresses gastric tumorigenesis. Science translational medicine 2014; 6(650): 250ra115-.
[http://dx.doi.org/10.1126/scitranslmed.3009569]
[38]
Kleeff J, Kornmann M, Sawhney H, Korc M. Actinomycin D induces apoptosis and inhibits growth of pancreatic cancer cells. Int J Cancer 2000; 86(3): 399-407.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000501)86: 3<399:AID-IJC15>3.0.CO;2-G] [PMID: 10760829]
[39]
Pirnia F, Schneider E, Betticher DC, Borner MM. Mitomycin C induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ 2002; 9(9): 905-14.
[http://dx.doi.org/10.1038/sj.cdd.4401062] [PMID: 12181741]
[40]
Vittorio O, Le Grand M, Makharza SA, et al. Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. Eur J Pharm Biopharm 2018; 122: 176-85.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.005] [PMID: 29129733]
[41]
Kaur B, Kaur R. Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity. Protein Expr Purif 2016; 125: 53-60.
[http://dx.doi.org/10.1016/j.pep.2015.09.011] [PMID: 26363115]
[42]
Pritsa AA, Kyriakidis DA. L-asparaginase of Thermus thermophilus: purification, properties and identification of essential amino acids for its catalytic activity. Mol Cell Biochem 2001; 216(1-2): 93-101.
[http://dx.doi.org/10.1023/A:1011066129771] [PMID: 11216870]
[43]
Alderson RF, Kreitman RJ, Chen T, et al. CAT-8015: a second-generation Pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies. Clin Cancer Res 2009; 15(3): 832-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1456] [PMID: 19188153]
[44]
Stachowiak R, Lyzniak M, Budziszewska B, et al. Cytotoxicity of bacterial metabolic products, including listeriolysin O, on leukocyte targets. BioMed Research International 2012.
[45]
Martarelli D, Pompei P, Mazzoni G. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM197. Chemotherapy 2009; 55(6): 425-32.
[http://dx.doi.org/10.1159/000264689] [PMID: 19996587]
[46]
Montaner B, Navarro S, Piqué M, et al. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol 2000; 131(3): 585-93.
[http://dx.doi.org/10.1038/sj.bjp.0703614] [PMID: 11015311]
[47]
Liu R, Cui C-B, Duan L, Gu Q-Q, Zhu W-M. Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Arch Pharm Res 2005; 28(12): 1341-4.
[http://dx.doi.org/10.1007/BF02977899] [PMID: 16392666]
[48]
Yamamoto C, Takemoto H, Kuno K, et al. Cycloprodigiosin hydrochloride, a new H(+)/Cl(-) symporter, induces apoptosis in human and rat hepatocellular cancer cell lines in vitro and inhibits the growth of hepatocellular carcinoma xenografts in nude mice. Hepatology 1999; 30(4): 894-902.
[http://dx.doi.org/10.1002/hep.510300417] [PMID: 10498640]
[49]
Taylor BN, Mehta RR, Yamada T, et al. Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Res 2009; 69(2): 537-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2932] [PMID: 19147567]
[50]
Goto M, Yamada T, Kimbara K, et al. Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour-suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol Microbiol 2003; 47(2): 549-59.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03317.x] [PMID: 12519204]
[51]
Nes IF, Holo H. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 2000; 55(1): 50-61.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<50::AIDBIP50>3.0.CO;2-3] [PMID: 10931441]
[52]
Ennahar S, Sashihara T, Sonomoto K, Ishizaki A. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 2000; 24(1): 85-106.
[http://dx.doi.org/10.1111/j.1574-6976.2000.tb00534.x] [PMID: 10640600]
[53]
Hammami R, Zouhir A, Ben Hamida J, Fliss I. BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiol 2007; 7: 89.
[http://dx.doi.org/10.1186/1471-2180-7-89] [PMID: 17941971]
[54]
Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I. BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 2010; 10: 22.
[http://dx.doi.org/10.1186/1471-2180-10-22] [PMID: 20105292]
[55]
Moll GN, Konings WN, Driessen AJ. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 1999; 76(1-4): 185-98.
[http://dx.doi.org/10.1023/A:1002002718501] [PMID: 10532378]
[56]
Brötz H, Sahl HG. New insights into the mechanism of action of lantibiotics--diverse biological effects by binding to the same molecular target. J Antimicrob Chemother 2000; 46(1): 1-6.
[http://dx.doi.org/10.1093/jac/46.1.1] [PMID: 10882681]
[57]
Smith L, Hillman J. Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr Opin Microbiol 2008; 11(5): 401-8.
[http://dx.doi.org/10.1016/j.mib.2008.09.008] [PMID: 18848642]
[58]
Fadeel B, Xue D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 2009; 44(5): 264-77.
[http://dx.doi.org/10.1080/10409230903193307] [PMID: 19780638]
[59]
Dobrzyńska I, Szachowicz-Petelska B, Sulkowski S, Figaszewski Z. Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol Cell Biochem 2005; 276(1-2): 113-9.
[http://dx.doi.org/10.1007/s11010-005-3557-3] [PMID: 16132692]
[60]
Yoon WH, Park HD, Lim K, Hwang BD. Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells. Biochem Biophys Res Commun 1996; 222(3): 694-9.
[http://dx.doi.org/10.1006/bbrc.1996.0806] [PMID: 8651907]
[61]
Kozłowska K, Nowak J, Kwiatkowski B, Cichorek M. ESR study of plasmatic membrane of the transplantable melanoma cells in relation to their biological properties. Exp Toxicol Pathol 1999; 51(1): 89-92.
[http://dx.doi.org/10.1016/S0940-2993(99)80074-8] [PMID: 10048719]
[62]
Zeisig R, Koklic T, Wiesner B, Fichtner I, Sentjurc M. Increase in fluidity in the membrane of MT3 breast cancer cells correlates with enhanced cell adhesion in vitro and increased lung metastasis in NOD/SCID mice. Arch Biochem Biophys 2007; 459(1): 98-106.
[http://dx.doi.org/10.1016/j.abb.2006.09.030] [PMID: 17222386]
[63]
Chaudhary J, Munshi M. Scanning electron microscopic analysis of breast aspirates. Cytopathology 1995; 6(3): 162-7.
[http://dx.doi.org/10.1111/j.1365-2303.1995.tb00469.x] [PMID: 7669927]
[64]
Laviña M, Gaggero C, Moreno F. Microcin H47, a chromosome-encoded microcin antibiotic of Escherichia coli. J Bacteriol 1990; 172(11): 6585-8.
[http://dx.doi.org/10.1128/JB.172.11.6585-6588.1990] [PMID: 2228975]
[65]
Wriessnegger T, Leitner E, Belegratis MR, Ingolic E, Daum G. Lipid analysis of mitochondrial membranes from the yeast Pichia pastoris. Biochim Biophys Acta 2009; 1791(3): 166-72.
[http://dx.doi.org/10.1016/j.bbalip.2008.12.017] [PMID: 19168151]
[66]
Schenkel LC, Bakovic M. Formation and regulation of mitochondrial membranes. Int J Cell Biol 2014.: 2014709828.
[http://dx.doi.org/10.1155/2014/709828] [PMID: 24578708]
[67]
Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 2006; 57(5): 545-53.
[http://dx.doi.org/10.1007/s00280-005-0111-7] [PMID: 16175394]
[68]
Ye JS, Zheng XJ, Leung KW, Chen HM, Sheu FS. Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem 2004; 136(2): 255-9.
[http://dx.doi.org/10.1093/jb/mvh114] [PMID: 15496597]
[69]
Maher S, McClean S. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 2006; 71(9): 1289-98.
[http://dx.doi.org/10.1016/j.bcp.2006.01.012] [PMID: 16530733]
[70]
Vaucher RA, Teixeira ML, Brandelli A. Investigation of the cytotoxicity of antimicrobial peptide P40 on eukaryotic cells. Curr Microbiol 2010; 60(1): 1-5.
[http://dx.doi.org/10.1007/s00284-009-9490-z] [PMID: 19727943]
[71]
López-Cuellar MdR Rodríguez-Hernández A-I. Chavarría-Hernández N. LAB bacteriocin applications in the last decade. Biotechnol Biotechnol Equip 2016; 30(6): 1039-50.
[http://dx.doi.org/10.1080/13102818.2016.1232605]
[72]
Nguyen C, Nguyen VD. Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. BioMed Research International 2016.
[http://dx.doi.org/10.1155/2016/8490482]
[73]
Prosekov AY, Dyshlyuk LS, Milentieva IS, et al. Antioxidant and antimicrobial activity of bacteriocin-producing strains of lactic acid bacteria isolated from the human gastrointestinal tract. Prog Nutr 2017; 19(1): 67-80.
[74]
Smarda J, Keprtová J. Cytotoxic effects of colicins E1-E5 and K on hamster fibroblasts. Folia Microbiol (Praha) 1987; 32(2): 133-6.
[http://dx.doi.org/10.1007/BF02883241] [PMID: 3583137]
[75]
de Zamaroczy M, Buckingham RH. Importation of nuclease colicins into E. coli cells: endoproteolytic cleavage and its prevention by the immunity protein. Biochimie 2002; 84(5-6): 423-32.
[http://dx.doi.org/10.1016/S0300-9084(02)01426-8] [PMID: 12423785]
[76]
Mora L, de Zamaroczy M. In vivo processing of DNase colicins E2 and E7 is required for their import into the cytoplasm of target cells. PLoS One 2014; 9(5): e96549.
[http://dx.doi.org/10.1371/journal.pone.0096549] [PMID: 24840776]
[77]
Chumchalová J, Smarda J. Human tumor cells are selectively inhibited by colicins. Folia Microbiol (Praha) 2003; 48(1): 111-5.
[http://dx.doi.org/10.1007/BF02931286] [PMID: 12744087]
[78]
Marcoleta A, Marín M, Mercado G, Valpuesta JM, Monasterio O, Lagos R. Microcin e492 amyloid formation is retarded by posttranslational modification. J Bacteriol 2013; 195(17): 3995-4004.
[http://dx.doi.org/10.1128/JB.00564-13] [PMID: 23836864]
[79]
Mercado G, Tello M, Marín M, Monasterio O, Lagos R. The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF. J Bacteriol 2008; 190(15): 5464-71.
[http://dx.doi.org/10.1128/JB.00351-08] [PMID: 18502859]
[80]
Hetz C, Bono MR, Barros LF, Lagos R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci USA 2002; 99(5): 2696-701.
[http://dx.doi.org/10.1073/pnas.052709699] [PMID: 11880624]
[81]
Entian KD, de Vos WM. Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics. Antonie van Leeuwenhoek 1996; 69(2): 109-17.
[http://dx.doi.org/10.1007/BF00399416] [PMID: 8775971]
[82]
Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 2014; 20(42): 15632-49.
[http://dx.doi.org/10.3748/wjg.v20.i42.15632] [PMID: 25400447]
[83]
Norouzi Z, Salimi A, Halabian R, Fahimi H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb Pathog 2018; 123: 183-9.
[http://dx.doi.org/10.1016/j.micpath.2018.07.006] [PMID: 30017942]
[84]
El-Deeb NM, Yassin AM, Al-Madboly LA, El-Hawiet A. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact 2018; 17(1): 29.
[http://dx.doi.org/10.1186/s12934-018-0877-z] [PMID: 29466981]
[85]
Ryan KJ, Ray CG. Medical microbiology. McGraw Hill 2004.
[86]
Gálvez A, Valdivia E, Abriouel H, et al. Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch Microbiol 1998; 171(1): 59-65.
[http://dx.doi.org/10.1007/s002030050678] [PMID: 9871020]
[87]
Strompfová V, Lauková A. In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe 2007; 13(5-6): 228-37.
[http://dx.doi.org/10.1016/j.anaerobe.2007.07.002] [PMID: 17884622]
[88]
Ó Cuív P, Giri R, Hoedt EC, McGuckin MA, Begun J, Morrison M. P ÓC. Enterococcus faecalis AHG0090 is a genetically tractable bacterium and produces a secreted peptidic bioactive that suppresses nuclear factor kappa B activation in human gut epithelial cells. Front Immunol 2018; 9: 790.
[http://dx.doi.org/10.3389/fimmu.2018.00790] [PMID: 29720977]
[89]
Brosnahan AJ, Merriman JA, Salgado-Pabón W, Ford B, Schlievert PM. Enterococcus faecalis inhibits superantigen toxic shock syndrome toxin-1-induced interleukin-8 from human vaginal epithelial cells through tetramic acids. PLoS One 2013; 8(4): e61255.
[http://dx.doi.org/10.1371/journal.pone.0061255] [PMID: 23613823]
[90]
Im J, Baik JE, Kim KW, et al. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells. Int Immunol 2015; 27(8): 381-91.
[http://dx.doi.org/10.1093/intimm/dxv016] [PMID: 25840438]
[91]
Al-Fakharany OMAA, El-Banna TE. Sonbol FI (somnambulate and anticancer activities of enteric Joe-342 produced by Enterococcus feacalis isolated from stool. J Clin Cell Immunol 2018; 9(558): 1000558.
[92]
Yusuf MA, Ichwan SJ, Haziyamin T, Hamid A. Anti-proliferative activities of purified bacteriocin from Enterococcus mundtii strain C4L10 isolated from the caecum of Malaysian non-broiler chicken on cancer cell lines. Int J Pharm Pharm Sci 2014; 7: 334-7.
[93]
Abdi-Ali A, Worobec EA, Deezagi A, Malekzadeh F. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol 2004; 50(5): 375-81.
[http://dx.doi.org/10.1139/w04-019] [PMID: 15213746]
[94]
Kumar B, Balgir P, Kaur B, Mittu B, Chauhan A. In vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study. Pharm Anal Acta 2012; 1(6)
[http://dx.doi.org/10.4172/2153-2435.1000183]
[95]
Kamarajan P, Hayami T, Matte B, et al. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One 2015; 10(7): e0131008.
[http://dx.doi.org/10.1371/journal.pone.0131008] [PMID: 26132406]
[96]
Baindara P, Gautam A, Raghava GPS, Korpole S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 2017; 7: 46541.
[http://dx.doi.org/10.1038/srep46541] [PMID: 28422156]
[97]
Paiva AD, de Oliveira MD, de Paula SO, Baracat-Pereira MC, Breukink E, Mantovani HC. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology 2012; 158(Pt 11): 2851-8.
[http://dx.doi.org/10.1099/mic.0.062190-0] [PMID: 22956757]
[98]
Sand SL, Oppegård C, Ohara S, et al. Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides 2010; 31(7): 1237-44.
[http://dx.doi.org/10.1016/j.peptides.2010.04.010] [PMID: 20416350]
[99]
Begde D, Bundale S, Mashitha P, Rudra J, Nashikkar N, Upadhyay A. Immunomodulatory efficacy of nisin--a bacterial lantibiotic peptide. J Pept Sci 2011; 17(6): 438-44.
[http://dx.doi.org/10.1002/psc.1341] [PMID: 21294231]
[100]
Ankaiah D, Palanichamy E, Antonyraj CB, et al. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells. Int J Biol Macromol 2018; 116: 502-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.002] [PMID: 29729340]
[101]
Ankaiah D, Esakkiraj P, Perumal V, Ayyanna R, Venkatesan A. Probiotic characterization of Enterococcus faecium por1: cloning, over expression of Enterocin-A and evaluation of antibacterial, anti-cancer properties. J Funct Foods 2017; 38: 280-92.
[http://dx.doi.org/10.1016/j.jff.2017.09.034]
[102]
Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 2014; 13(Suppl. 1): S3.
[http://dx.doi.org/10.1186/1475-2859-13-S1-S3] [PMID: 25186038]
[103]
Wang G, Manns DC, Churey JJ, Worobo RW. Development of a homologous expression system for and systematic site-directed mutagenesis analysis of thurincin H, a bacteriocin produced by Bacillus thuringiensis SF361. Appl Environ Microbiol 2014; 80(12): 3576-84.
[http://dx.doi.org/10.1128/AEM.00433-14] [PMID: 24682301]
[104]
Sun L, Song H, Zheng W. Improvement of antimicrobial activity of pediocin PA-1 by site-directed mutagenesis in C-terminal domain. Protein Pept Lett 2015; 22(11): 1007-12.
[http://dx.doi.org/10.2174/0929866522666150824162006] [PMID: 26299998]
[105]
Cotter PD. Bioengineering: a bacteriocin perspective. Bioengineered 2012; 3(6): 313-9.
[http://dx.doi.org/10.4161/bioe.21601] [PMID: 22922299]
[106]
Eom J-E, Park J-Y, Moon G-S. Increased bacteriocin activity of a recombinant Pediococcus acidilactici. Food Sci Biotechnol 2012; 21(6): 1781-4.
[http://dx.doi.org/10.1007/s10068-012-0238-3]
[107]
Walsh CJ, Guinane CM, Hill C, Ross RP, O’Toole PW, Cotter PD. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiol 2015; 15: 183.
[http://dx.doi.org/10.1186/s12866-015-0515-4] [PMID: 26377179]
[108]
Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics 2014; 15: 983.
[http://dx.doi.org/10.1186/1471-2164-15-983] [PMID: 25407095]
[109]
Oppegård C, Rogne P, Kristiansen PE, Nissen-Meyer J. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing D-amino acid residues. Microbiology 2010; 156(Pt 6): 1883-9.
[http://dx.doi.org/10.1099/mic.0.038430-0] [PMID: 20203056]
[110]
O’Shea EF, O’Connor PM, Cotter PD, Ross RP, Hill C. Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl Environ Microbiol 2010; 76(16): 5356-62.
[http://dx.doi.org/10.1128/AEM.00523-10] [PMID: 20581174]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy