Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma with Clinical Insight

Author(s): Suman K. Ray, Yamini Meshram and Sukhes Mukherjee*

Volume 21, Issue 3, 2021

Published on: 24 August, 2020

Page: [221 - 236] Pages: 16

DOI: 10.2174/1566524020666200824103749

Price: $65

Abstract

Cancer immunotherapy endeavours in harnessing the delicate strength and specificity of the immune system for therapy of different malignancies, including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include the administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies, including colorectal carcinoma in a recent decade. Despite the considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect the therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review, we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.

Keywords: Cancerimmunotherapy, colorectal carcinoma, CAR-T technology, combination therapies, neoplastic cells, transformation, tumor cells.

[1]
Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 2011; 11(11): 805-12.
[http://dx.doi.org/10.1038/nrc3153] [PMID: 22020206]
[2]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[3]
Ucker DS, Levine JS. Exploitation of Apoptotic Regulation in Cancer. Front Immunol 2018; 9: 241.
[http://dx.doi.org/10.3389/fimmu.2018.00241] [PMID: 29535707]
[4]
Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics 2019; 13: 33-51.
[http://dx.doi.org/10.2147/BTT.S166310] [PMID: 31118560]
[5]
Maher J, Wilkie S, Davies DM, et al. Targeting of tumor-associated glycoforms of MUC1 with CAR T cells. Immunity 2016; 45(5): 945-6.
[http://dx.doi.org/10.1016/j.immuni.2016.10.014] [PMID: 27851917]
[6]
Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507-17.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[7]
Jhawar SR, Thandoni A, Bommareddy PK, et al. Oncolytic viruses—natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7: 202.
[http://dx.doi.org/10.3389/fonc.2017.00202] [PMID: 28955655]
[8]
Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 2016; 4: 53.
[http://dx.doi.org/10.1186/s40425-016-0158-5] [PMID: 27660707]
[9]
Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemother 2019; 46(1): 15-24.
[http://dx.doi.org/10.1159/000496870] [PMID: 31244578]
[10]
Minutolo NG, Hollander EE, Powell DJ Jr. The emergence of universal immune receptor T cell therapy for cancer. Front Oncol 2019; 9: 176.
[http://dx.doi.org/10.3389/fonc.2019.00176] [PMID: 30984613]
[11]
Nicholson LB. The immune system. Essays Biochem 2016; 60(3): 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[12]
Smith AJ, Oertle J, Warren D, Prato D. Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: summary and perspective. J Cell Immunother 2016; 2: 59-68.
[http://dx.doi.org/10.1016/j.jocit.2016.08.001]
[13]
Cofre J, Abdelhay E. Cancer is to embryology as mutation is to genetics: hypothesis of the cancer as embryological phenomenon. The Scientific World Journal 2017.
[http://dx.doi.org/10.1155/2017/3578090]
[14]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[15]
Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[16]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[17]
Koido S, Ohkusa T, Homma S, et al. Immunotherapy for colorectal cancer. World J Gastroenterol 2013; 19(46): 8531-42.
[http://dx.doi.org/10.3748/wjg.v19.i46.8531] [PMID: 24379570]
[18]
Bonfrate L, Altomare DF, Di Lena M, et al. MicroRNA in colorectal cancer: new perspectives for diagnosis, prognosis and treatment. J Gastroint Liver Dis 2013; p. 22.
[19]
Mousavi S, Moallem R, Hassanian SM, et al. Tumor-derived exosomes: Potential biomarkers and therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2019; 234(8): 12422-32.
[http://dx.doi.org/10.1002/jcp.28080] [PMID: 30637729]
[20]
Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J Gastroenterol 2018; 24(48): 5418-32.
[http://dx.doi.org/10.3748/wjg.v24.i48.5418] [PMID: 30622371]
[21]
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39(1): 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[22]
Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 2016; 16(9): 566-81.
[http://dx.doi.org/10.1038/nrc.2016.97] [PMID: 27550819]
[23]
Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009; 206(13): 3015-29.
[http://dx.doi.org/10.1084/jem.20090847] [PMID: 20008522]
[24]
Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol 2019; 185(5): 821-35.
[http://dx.doi.org/10.1111/bjh.15851] [PMID: 30864164]
[25]
Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 2018; 19(1): 5-18.
[http://dx.doi.org/10.2174/1389201019666180418095526] [PMID: 29667553]
[26]
Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3(4): 388-98.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0548] [PMID: 23550147]
[27]
Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther 2017; 178: 83-91.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.012] [PMID: 28342824]
[28]
Yu JX, Hubbard-Lucey VM, Tang J. The global pipeline of cell therapies for cancer. Nat Rev Drug Discov 2018; 17: 465-6.
[http://dx.doi.org/10.1038/nrd.2018.74]
[29]
Schultz L, Mackall C. Driving CAR T cell translation forward. Sci Transl Med 2019; 11(481)eaaw2127
[http://dx.doi.org/10.1126/scitranslmed.aaw2127] [PMID: 30814337]
[30]
Busch W. Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 1868; 5: 137. [in German].
[31]
Metchnikoff E. Untersuchungen über die mesodermalen Phagocyten einiger Wirbeltiere. Biol Zentralbl 1883; 3: 560. [in German].
[32]
Behring EV. About the establishment of diphtheria immunity and tetanus immunity in animals 1890; 16: 1113.: 1114.
[33]
Bordet JJ. Les leucocytes et les propriétés actives du sérum chez les vaccinés. Ann Inst Pasteur (Paris) 1895; 9: 462-506. [in French].
[34]
Die EP. Wertbesmessung des Diphterieilserums und deren theoretische Grundlagen. Klinische Jahrbuch 1897; 6: 299-326. [in German].
[35]
Landsteiner K. Über Agglutinationserscheinungen normalen menschlichen Blutes. Wien Klin Wochenschr 1901; 14: 1132-4. [in German].
[36]
Little CC. A possible Mendelian explanation for a type of inheritance apparently non-Mendelian in nature. Science 1914; 40(1042): 904-6.
[http://dx.doi.org/10.1126/science.40.1042.904] [PMID: 17809860]
[37]
Gorer PA, Lyman S, Snell GD. Studies on the genetic and antigenic basis of tumor transplantation. Linkage between a histocompatibility gene and’fused’in mice. Proc R Soc Lond B Biol Sci 1948; 135: 499-505.
[http://dx.doi.org/10.1098/rspb.1948.0026]
[38]
Jerne NK. The natural-selection theory of antibody formation. Proc Natl Acad Sci USA 1955; 41(11): 849-57.
[http://dx.doi.org/10.1073/pnas.41.11.849] [PMID: 16589759]
[39]
Billingham RE, Brent L, Medawar PB. Quantitative studies on tissue transplantation immunity. III. Actively acquired tolerance. Philos Trans R Soc Lond B Biol Sci 1956; 357-414.
[http://dx.doi.org/10.1098/rstb.1956.0006]
[40]
Silverstein AM. The curious case of the 1960 Nobel Prize to Burnet and Medawar. Immunology 2016; 147(3): 269-74.
[http://dx.doi.org/10.1111/imm.12558] [PMID: 26790994]
[41]
Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147(927): 258-67.
[http://dx.doi.org/10.1098/rspb.1957.0048] [PMID: 13465720]
[42]
Porter RR. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J 1959; 73: 119-26.
[http://dx.doi.org/10.1042/bj0730119] [PMID: 14434282]
[43]
Edelman GM, Poulik MD. Studies on structural units of the γ-globulins. J Exp Med 1961; 113: 861-84.
[http://dx.doi.org/10.1084/jem.113.5.861] [PMID: 13725659]
[44]
Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137(5): 1142-62.
[http://dx.doi.org/10.1084/jem.137.5.1142] [PMID: 4573839]
[45]
Zinkernagel RM, Doherty PC. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 1974; 251(5475): 547-8.
[http://dx.doi.org/10.1038/251547a0] [PMID: 4547543]
[46]
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity nature 1975; 256: 495-7.
[47]
Jerne NK. The somatic generation of immune recognition. Eur J Immunol 1971; 1(1): 1-9.
[http://dx.doi.org/10.1002/eji.1830010102] [PMID: 14978855]
[48]
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72(9): 3666-70.
[http://dx.doi.org/10.1073/pnas.72.9.3666] [PMID: 1103152]
[49]
Tonegawa S. Reiteration frequency of immunoglobulin light chain genes: further evidence for somatic generation of antibody diversity. Proc Natl Acad Sci USA 1976; 73(1): 203-7.
[http://dx.doi.org/10.1073/pnas.73.1.203] [PMID: 813222]
[50]
Allison JP, McIntyre BW, Bloch D. Tumor-specific antigen of murine T-lymphoma defined with monoclonal antibody. J Immunol 1982; 129(5): 2293-300.
[PMID: 6181166]
[51]
van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254(5038): 1643-7.
[http://dx.doi.org/10.1126/science.1840703] [PMID: 1840703]
[52]
Norman R, Thorsten Z. Patient-derived T The CAR T Cell Story healthbook TIMES Oncology Hematology 2019.
[53]
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388(6640): 394-7.
[http://dx.doi.org/10.1038/41131] [PMID: 9237759]
[54]
Pagès F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005; 353(25): 2654-66.
[http://dx.doi.org/10.1056/NEJMoa051424] [PMID: 16371631]
[55]
National Cancer Institute. FDA approval for Sipuleucel-T 2019.https://www.cancer.gov/about-cancer/treatment/drugs/sipuleucel-t
[56]
Gardner TA, Elzey BD, Hahn NM. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum Vaccin Immunother 2012; 8(4): 534-9.
[http://dx.doi.org/10.4161/hv.19795] [PMID: 22832254]
[57]
Qasim W, Zhan H, Samarasinghe S, et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells Science translational medicine 2017; 9: eaaj2013.
[http://dx.doi.org/10.1126/scitranslmed.aaj2013]
[58]
Mansh M. Ipilimumab and cancer immunotherapy: a new hope for advanced stage melanoma. Yale J Biol Med 2011; 84(4): 381-9.
[PMID: 22180676]
[59]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity science 2012; 337: 816-21.
[60]
Food US. Drug Administration Pembrolizumab (KEYTRUDA) Checkpoint Inhibitor 2016.https://www.fda.gov/drugs/resources-information-approved-drugs/pembrolizumab-keytruda-checkpoint-inhibitor
[61]
Food US. Drug Administration Atezolizumab (TECENTRIQ) 2016.http://www. fda. gov/Drugs/InformationOnDrugs
[62]
Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016; 539(7630): 479.
[http://dx.doi.org/10.1038/nature.2016.20988] [PMID: 27882996]
[63]
Mengus C, Muraro MG, Mele V, et al. In Vitro Modeling of Tumor–Immune System Interaction. ACS Biomater Sci Eng 2017; 4: 314-23.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00077]
[64]
Street SE, Hayakawa Y, Zhan Y, et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 2004; 199(6): 879-84.
[http://dx.doi.org/10.1084/jem.20031981] [PMID: 15007091]
[65]
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335-76.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]
[66]
Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med 2001; 7(10): 1118-22.
[http://dx.doi.org/10.1038/nm1001-1118] [PMID: 11590434]
[67]
Homey B, Müller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancer? Nat Rev Immunol 2002; 2(3): 175-84.
[http://dx.doi.org/10.1038/nri748] [PMID: 11913068]
[68]
Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264(5161): 961-5.
[http://dx.doi.org/10.1126/science.7513904] [PMID: 7513904]
[69]
Sukari A, Nagasaka M, Al-Hadidi A, Lum LG. Cancer immunology and immunotherapy. Anticancer Res 2016; 36(11): 5593-606.
[http://dx.doi.org/10.21873/anticanres.11144] [PMID: 27793882]
[70]
Pan Y, Kupper TS. Metabolic reprogramming and longevity of tissue-resident memory T cells. Front Immunol 2018; 9: 1347.
[http://dx.doi.org/10.3389/fimmu.2018.01347] [PMID: 29967608]
[71]
Lin L, Couturier J, Yu X, Medina MA, Kozinetz CA, Lewis DE. Granzyme B secretion by human memory CD4 T cells is less strictly regulated compared to memory CD8 T cells. BMC Immunol 2014; 15: 36.
[http://dx.doi.org/10.1186/s12865-014-0036-1] [PMID: 25245659]
[72]
Titov A, Valiullina A, Zmievskaya E, et al. Advancing CAR T-Cell Therapy for Solid Tumors: Lessons Learned from Lymphoma Treatment. Cancers (Basel) 2020; 12(1): 125.
[http://dx.doi.org/10.3390/cancers12010125] [PMID: 31947775]
[73]
Vignali D, Kallikourdis M. Improving homing in T cell therapy. Cytokine Growth Factor Rev 2017; 36: 107-16.
[http://dx.doi.org/10.1016/j.cytogfr.2017.06.009] [PMID: 28690108]
[74]
Hanahan D, Coussens LM. Best of Supplement—Cancer Cell Best of 2012 2012.
[75]
Oo YH, Shetty S, Adams DH. The role of chemokines in the recruitment of lymphocytes to the liver. Dig Dis 2010; 28(1): 31-44.
[http://dx.doi.org/10.1159/000282062] [PMID: 20460888]
[76]
Lo A, Li CP, Buza EL, et al. Fibroblast activation protein augments progression and metastasis of pancreatic ductal adenocarcinoma. JCI Insight 2017; 2(19): 2.
[http://dx.doi.org/10.1172/jci.insight.92232] [PMID: 28978805]
[77]
Schuberth PC, Hagedorn C, Jensen SM, et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med 2013; 11: 187.
[http://dx.doi.org/10.1186/1479-5876-11-187] [PMID: 23937772]
[78]
Priceman SJ, Tilakawardane D, Jeang B, et al. Regional delivery of chimeric antigen receptor–engineered T cells effectively targets HER2+ breast Cancer metastasis to the brain. Clin Cancer Res 2018; 24(1): 95-105.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2041] [PMID: 29061641]
[79]
Klampatsa A, Achkova DY, Davies DM, et al. Intracavitary ‘T4 immunotherapy’ of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells. Cancer Lett 2017; 393: 52-9.
[http://dx.doi.org/10.1016/j.canlet.2017.02.015] [PMID: 28223167]
[80]
Ferrari SM, Fallahi P, Galdiero MR, et al. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int J Mol Sci 2019; 20(18): 4413.
[http://dx.doi.org/10.3390/ijms20184413] [PMID: 31500315]
[81]
Amin A, White RL. Interleukin-2 in renal cell carcinoma: a has-been or a still-viable option? J Kidney Cancer VHL 2014; 1(7): 74-83.
[http://dx.doi.org/10.15586/jkcvhl.2014.18] [PMID: 28326252]
[82]
Schwartz RN, Dutcher JP. Managing toxicities of high-dose interleukin-2 2002.
[83]
Dummer R, Garbe C, Thompson JA, et al. Randomized dose-escalation study evaluating peginterferon alfa-2a in patients with metastatic malignant melanoma. J Clin Oncol 2006; 24(7): 1188-94.
[http://dx.doi.org/10.1200/JCO.2005.04.3216] [PMID: 16505439]
[84]
Wang M, Yin B, Wang HY, Wang RF. Current advances in T-cell-based cancer immunotherapy. Immunotherapy 2014; 6(12): 1265-78.
[http://dx.doi.org/10.2217/imt.14.86] [PMID: 25524383]
[85]
Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 2014; 257(1): 56-71.
[http://dx.doi.org/10.1111/imr.12132] [PMID: 24329789]
[86]
Gilham DE, Anderson J, Bridgeman JS, et al. Adoptive T-cell therapy for cancer in the United kingdom: a review of activity for the British Society of Gene and Cell Therapy annual meeting 2015. Hum Gene Ther 2015; 26(5): 276-85.
[http://dx.doi.org/10.1089/hum.2015.024] [PMID: 25860661]
[87]
Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: An updated review. Artif Cells Nanomed Biotechnol 2016; 44(3): 769-79.
[PMID: 25801036]
[88]
Kouidhi S, Elgaaied AB, Chouaib S. Impact of metabolism on T-cell differentiation and function and cross talk with tumor microenvironment. Front Immunol 2017; 8: 270.
[http://dx.doi.org/10.3389/fimmu.2017.00270] [PMID: 28348562]
[89]
Yi Z, Prinzing BL, Cao F, Gottschalk S, Krenciute G. Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Mol Ther Methods Clin Dev 2018; 9: 70-80.
[http://dx.doi.org/10.1016/j.omtm.2018.01.009] [PMID: 29552579]
[90]
Ajina A, Maher J. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018; 17(9): 1795-815.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1097] [PMID: 30181329]
[91]
Pituch KC, Miska J, Krenciute G, et al. Adoptive transfer of IL13Rα2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblastoma. Mol Ther 2018; 26(4): 986-95.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.001] [PMID: 29503195]
[92]
Gargett T, Yu W, Dotti G, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol Ther 2016; 24(6): 1135-49.
[http://dx.doi.org/10.1038/mt.2016.63] [PMID: 27019998]
[93]
Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunology 2014; 3(5)e16
[http://dx.doi.org/10.1038/cti.2014.7] [PMID: 25505964]
[94]
Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. 5th ed. New York: Garland Science 2001.
[95]
Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6): 581-90.
[http://dx.doi.org/10.1038/nm.3838] [PMID: 25939063]
[96]
Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 2014; 257(1): 83-90.
[http://dx.doi.org/10.1111/imr.12125] [PMID: 24329791]
[97]
Kakarla S, Song XT, Gottschalk S. Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy 2012; 4(11): 1129-38.
[http://dx.doi.org/10.2217/imt.12.112] [PMID: 23194363]
[98]
Parente-Pereira AC, Burnet J, Ellison D, et al. Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J Clin Immunol 2011; 31(4): 710-8.
[http://dx.doi.org/10.1007/s10875-011-9532-8] [PMID: 21505816]
[99]
Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12(20 Pt 1): 6106-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1183] [PMID: 17062687]
[100]
Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics 2016; 3: 16014.
[http://dx.doi.org/10.1038/mto.2016.14] [PMID: 27231717]
[101]
Barrett DM, Grupp SA, June CH. Chimeric antigen receptor–and TCR-modified T cells enter main street and wall street. J Immunol 2015; 195(3): 755-61.
[http://dx.doi.org/10.4049/jimmunol.1500751] [PMID: 26188068]
[102]
Bridgeman JS, Ladell K, Sheard VE, et al. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy. Clin Exp Immunol 2014; 175(2): 258-67.
[http://dx.doi.org/10.1111/cei.12216] [PMID: 24116999]
[103]
Weinkove R, George P, Dasyam N, McLellan AD. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunology 2019; 8(5)e1049
[http://dx.doi.org/10.1002/cti2.1049] [PMID: 31110702]
[104]
Foster AE, Mahendravada A, Shinners NP, et al. Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther 2017; 25(9): 2176-88.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.014] [PMID: 28697888]
[105]
Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 2016; 22(8): 1875-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1433] [PMID: 27084741]
[106]
Zhao L, Cao YJ, Engineered T, Engineered T. Cell Therapy for Cancer in the Clinic. Front Immunol 2019; 10: 2250.
[http://dx.doi.org/10.3389/fimmu.2019.02250] [PMID: 31681259]
[107]
Lv J, Zhao R, Wu D, et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol 2019; 12(1): 18.
[http://dx.doi.org/10.1186/s13045-019-0704-y] [PMID: 30777106]
[108]
Ma S, Li X, Wang X, et al. Current Progress in CAR-T Cell Therapy for Solid Tumors. Int J Biol Sci 2019; 15(12): 2548-60.
[http://dx.doi.org/10.7150/ijbs.34213] [PMID: 31754328]
[109]
Deng X, Gao F, Li N, et al. Antitumor activity of NKG2D CART cells against human colorectal cancer cells in vitro and in vivo. Am J Cancer Res 2019; 9(5): 945-58.
[PMID: 31218103]
[110]
Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2017; 9(9): 1183-97.
[http://dx.doi.org/10.15252/emmm.201607485] [PMID: 28765140]
[111]
Saito T, Kuss I, Dworacki G, Gooding W, Johnson JT, Whiteside TL. Spontaneous ex vivo apoptosis of peripheral blood mononuclear cells in patients with head and neck cancer. Clin Cancer Res 1999; 5(6): 1263-73.
[PMID: 10389908]
[112]
Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, et al. Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress–induced loss of antitumor activity. J Immunol 2016; 196(2): 759-66.
[http://dx.doi.org/10.4049/jimmunol.1401710] [PMID: 26673145]
[113]
Kochenderfer JN, Dudley ME, Feldman SA, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119(12): 2709-20.
[http://dx.doi.org/10.1182/blood-2011-10-384388] [PMID: 22160384]
[114]
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[115]
Anderson K, Latchford T. Associated toxicities: Assessment and management related to CAR T-cell therapy. Clin J Oncol Nurs 2019; 23(2): 13-9.
[PMID: 30880814]
[116]
Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol 2012; 24(5): 580-4.
[http://dx.doi.org/10.1016/j.coi.2012.08.008] [PMID: 22981681]
[117]
Chang ZL, Chen YY. CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond. Trends Mol Med 2017; 23(5): 430-50.
[http://dx.doi.org/10.1016/j.molmed.2017.03.002] [PMID: 28416139]
[118]
Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 2016; 65(6): 631-49.
[http://dx.doi.org/10.1007/s00262-016-1842-5] [PMID: 27138532]
[119]
Zhang BL, Qin DY, Mo ZM, et al. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Sci China Life Sci 2016; 59(4): 340-8.
[http://dx.doi.org/10.1007/s11427-016-5027-4] [PMID: 26965525]
[120]
Slaney CY, Kershaw MH, Darcy PK. Trafficking of T Cells into Tumors Cancer Res 2014; 74(24): 7168-75.
[121]
D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 2018; 9(3): 282.
[http://dx.doi.org/10.1038/s41419-018-0278-6] [PMID: 29449531]
[122]
Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget 2017; 8(52): 90521-31.
[http://dx.doi.org/10.18632/oncotarget.19361] [PMID: 29163850]
[123]
Zhang H, Ye ZL, Yuan ZG, Luo ZQ, Jin HJ, Qian QJ. New strategies for the treatment of solid tumors with CAR-T cells. Int J Biol Sci 2016; 12(6): 718-29.
[http://dx.doi.org/10.7150/ijbs.14405] [PMID: 27194949]
[124]
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9(2): 115.
[http://dx.doi.org/10.1038/s41419-017-0061-0] [PMID: 29371595]
[125]
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47-62.
[http://dx.doi.org/10.1038/nrclinonc.2017.148] [PMID: 28925994]
[126]
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18(4): 843-51.
[http://dx.doi.org/10.1038/mt.2010.24] [PMID: 20179677]
[127]
Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18(4): 666-8.
[http://dx.doi.org/10.1038/mt.2010.31] [PMID: 20357779]
[128]
Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 2007; 1(1): 26-41.
[http://dx.doi.org/10.1016/j.molonc.2007.01.004] [PMID: 19383285]
[129]
Pardoll DM, Topalian SL. The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 1998; 10(5): 588-94.
[http://dx.doi.org/10.1016/S0952-7915(98)80228-8] [PMID: 9794842]
[130]
Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013; 14(12): 1212-8.
[http://dx.doi.org/10.1038/ni.2762] [PMID: 24240160]
[131]
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443-54.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[132]
Wei SC, Anang NAS, Sharma R, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci USA 2019; 116(45): 22699-709.
[http://dx.doi.org/10.1073/pnas.1821218116] [PMID: 31636208]
[133]
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 2010; 207(10): 2187-94.
[http://dx.doi.org/10.1084/jem.20100643] [PMID: 20819927]
[134]
Taube JM, Galon J, Sholl LM, et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol 2018; 31(2): 214-34.
[http://dx.doi.org/10.1038/modpathol.2017.156] [PMID: 29192647]
[135]
Sur D, Havasi A, Cainap C, et al. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J Clin Med 2020; 9(1): 182.
[http://dx.doi.org/10.3390/jcm9010182] [PMID: 31936611]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy