Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

The Plausible Role of Indian Traditional Medicine in Combating Corona Virus (SARS-CoV 2): A Mini-Review

Author(s): J. Adithya, Bhagyalakshmi Nair, T.S. Aishwarya and Lekshmi R. Nath*

Volume 22, Issue 7, 2021

Published on: 07 August, 2020

Page: [906 - 919] Pages: 14

DOI: 10.2174/1389201021666200807111359

Price: $65

Abstract

SARS-CoV 2 is a novel virus strain of Coronavirus, reported in China in late December 2019. Its highly contagious nature in humans has prompted WHO to designate the ongoing pandemic as a Public Health Emergency of International Concern. At this moment, there is no specific treatment and the therapeutic strategies to deal with the infection are only supportive, with prevention aimed at reducing community transmission. A permanent solution for the pandemic, which has brought the world economy to the edge of collapse, is the need of the hour. This situation has brought intense research in traditional systems of medicine. Indian Traditional System, Ayurveda, has a clear concept of the cause and treatment of pandemics. Through this review, information on the potential antiviral traditional medicines along with their immunomodulatory pathways are discussed. We have covered the seven most important Indian traditional plants with antiviral properties: Withania somnifera (L.) Dunal (family: Solanaceae), Tinospora cordifolia (Thunb.) Miers (family: Menispermaceae), Phyllanthus emblica L. (family: Euphorbiaceae), Asparagus racemosus L. (family: Liliaceae), Glycyrrhiza glabra L. (family: Fabaceae), Ocimum sanctum L. (family: Lamiaceae) and Azadirachta indica A. Juss (family: Meliaceae) in this review. An attempt is also made to bring into limelight the importance of dietary polyphenol, Quercetin, which is a potential drug candidate in the making against the SARS-CoV2 virus.

Keywords: COVID 19, traditional medicine, ayurveda, phytochemical, quercetin, SARS-CoV2 virus.

Graphical Abstract

[1]
Akin-Osanaiya, B.C.; Nok, A.J.; Ibrahim, S.; Inuwa, H.M.; Onyike, E.; Amlabu, E.; Haruna, E. Antimalarial effect of neem leaf and neem stem bark extracts on Plasmodium berghei infected in the pathology and treatment of malaria. Int. J. Res. Biochem. Biophys., 2013, 3(1), 7-14.
[2]
Alok, S.; Jain, S.K.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): A review. Asian Pac. J. Trop. Dis., 2013, 3(3), 242-251.
[http://dx.doi.org/10.1016/S2222-1808(13)60049-3]
[3]
Al-Osail, A.M.; Al-Wazzah, M.J. The history and epidemiology of Middle East respiratory syndrome corona virus. Multidisciplinary Respirat. Med., 2017, 12(1), 20.
[http://dx.doi.org/10.1186/s40248-017-0101-8]
[4]
Alvarez, P.; Alvarado, C.; Puerto, M.; Schlumberger, A.; Jiménez, L.; De la Fuente, M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition, 2006, 22(9), 913-921.
[http://dx.doi.org/10.1016/j.nut.2005.12.012]
[5]
Alzohairy, M.A. Therapeutics role of Azadirachta indica (neem) and their active constituents in diseases prevention and treatment. Evid. Based Complement. Alternat. Med., 2016, 2016, 7382506.
[http://dx.doi.org/10.1155/2016/7382506]
[6]
Amanat, F.; Krammer, F. SARS-CoV-2 vaccines: Status report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007]
[7]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacognosy. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044]
[8]
Badam, L.; Joshi, S.P.; Bedekar, S.S. 'In vitro' antiviral activity of neem (Azadirachta indica, A. Juss) leaf extract against group B coxsackie viruses. J. Commun. Dis., 1999, 31(2), 79-90.
[9]
Bani, S.; Gautam, M.; Sheikh, F.A.; Khan, B.; Satti, N.K.; Suri, K.A.; Qazi, G.N.; Patwardhan, B. Selective Th1 up-regulating activity of Withania somnifera aqueous extract in an experimental system using flow cytometry. J. Ethnopharmacol., 2006, 107(1), 107-115.
[http://dx.doi.org/10.1016/j.jep.2006.02.016] [PMID: 16603328]
[10]
Bhat, H.P.; Jakribettu, R.P.; Boloor, R.; Fayad, R.; Baliga, M.S. Use of ayurvedic medicinal plants as immunomodulators in geriatrics: Preclinical studies. Foods Dietary Suppl. Prevent.Treatment Dis. Older Adults; Academic Press, 2015, pp. 143-149.
[http://dx.doi.org/10.20238/ijarbest]
[11]
Bhatwalkar, S.B.; Shukla, P.; Srivastava, R.K.; Mondal, R.; Anupam, R. Validation of environmental disinfection efficiency of traditional Ayurvedic fumigation practices. J. Ayurveda Integr. Med., 2019, 10(3), 203-206.
[http://dx.doi.org/10.1016/j.jaim.2019.05.002]
[12]
Biswas, K.; Chattopadhyay, I.; Banerjee, R.K.; Bandyopadhyay, U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr. Sci., 2002, 82(11), 1336-1345.
[13]
Borkotoky, S.; Banerjee, M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J. Biomol. Struct. Dynam, 2020, 1-17.
[http://dx.doi.org/10.1080/07391102.2020.1774419]
[14]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation and treatment coronavirus (COVID-19).In Statpearls [internet] StatPearls Publishing; , 2020. https://www.ncbi.nlm.nih.gov/books/NBK554776/
[PMID: 32150360]
[15]
Chandrasekaran, C.V.; Mathuram, L.N.; Daivasigamani, P.; Bhatnagar, U. Tinosporacordi folia, a safety evaluation. Toxicol. In Vitro, 2009, 23(7), 1220-1226.
[http://dx.doi.org/10.1016/j.tiv.2009.07.030]
[16]
Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H. Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): Structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 2006, 14(24), 8295-8306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[17]
Chulet, R.; Pradhan, P. A review on rasayana. Pharmacog. Rev., 2009, 3(6), 229.
[18]
Cione, E.; La Torre, C.; Cannataro, R.; Caroleo, M.C.; Plastina, P.; Gallelli, L. Quercetin, epigallocatechingallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules, 2019, 25(1), 63.
[http://dx.doi.org/10.3390/molecules25010063]
[19]
Clergeaud, G.; Dabbagh-Bazarbachi, H.; Ortiz, M.; Fernández-Larrea, J.B.; O’Sullivan, C.K. A simple liposome assay for the screening of zinc ionophore activity of polyphenols. Food Chem., 2016, 197, 916-923.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.057]
[20]
Cohen, M.M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554]
[21]
Dabbagh-Bazarbachi, H.; Clergeaud, G.; Quesada, I.M.; Ortiz, M.; O’Sullivan, C.K.; Fernández-Larrea, J.B. Zinc ionophore activity of quercetin and epigallocatechin-gallate: From Hepa 1-6 cells to a liposome model. J. Agric. Food Chem., 2014, 62(32), 8085-8093.
[http://dx.doi.org/10.1021/jf5014633]
[22]
Dar, N.J.; Muzamil, A. Neurodegenerative diseases and Withania somnifera (L.): An update J. Ethnopharmacol., 2020, 256, 112769.
[http://dx.doi.org/10.1016/j.jep.2020.112769] [PMID: 32240781]
[23]
Das, S.; Bordoloi, R.; Newar, N. A review on immune modulatory effect of some traditional medicinal herbs. J. Pharmaceut. Chem. Biologic. Sci., 2014, 2(1), 33-42.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(9).3602-10]
[24]
De Wilde, A.H.; Snijder, E.J.; Kikkert, M.; van Hemert, M. Host factors in coronavirus replication. Curr. Topics Microbiol. Immunol., 2018, 419, 1-42.
[http://dx.doi.org/10.1007/82_2017_25]
[25]
De Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81]
[26]
El-SaberBatiha, G.; MagdyBeshbishy, A.; El-Mleeh, A.; Abdel-Daim, M.M.; Prasad, D.H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules, 2020, 10(3), 352.
[http://dx.doi.org/10.3390/biom10030352]
[27]
Fung, T.S.; Liu, D.X. Human coronavirus: Host-pathogen interaction. Annu. Rev. Microbiol., 2019, 73, 529-557.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759]
[28]
Gao, Q.Y.; Chen, Y.X.; Fang, J.Y. Novel coronavirus infection and gastrointestinal tract. J. Digest Dis., 2020, 21(3), 125-126.
[http://dx.doi.org/10.1111/1751-2980.12851]
[29]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047]
[30]
Gautam, M.; Diwanay, S.; Gairola, S.; Shinde, Y.; Patki, P.; Patwardhan, B. Immunoadjuvant potential of Asparagus racemosus aqueous extract in experimental system J. Ethnopharmacol., 2004, 91(2-3), 251-255.
[http://dx.doi.org/10.1016/j.jep.2003.12.023]
[31]
Gautam, M.; Saha, S.; Bani, S.; Kaul, A.; Mishra, S.; Patil, D.; Satti, N.K.; Suri, K.A.; Gairola, S.; Suresh, K.; Jadhav, S.; Qazi, G.N.; Patwardhan, B. Immunomodulatory activity of Asparagus racemosus on systemic Th1/Th2 immunity: Implications for immunoadjuvant potential. J. Ethnopharmacol., 2009, 121(2), 241-247. Epub 2008 Nov 8
[http://dx.doi.org/10.1016/j.jep.2008.10.028] [PMID: 19038322]
[32]
Ghoke, S.S.; Sood, R.; Kumar, N.; Pateriya, A.K.; Bhatia, S.; Mishra, A.; Dixit, R.; Singh, V.K.; Desai, D.N.; Kulkarni, D.D.; Dimri, U.; Singh, V.P. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complement. Altern. Med., 2018, 18(1), 174.
[http://dx.doi.org/10.1186/s12906-018-2238-1]
[33]
Gibson, W.J.; Nafee, T.; Travis, R.; Yee, M.; Kerneis, M.; Ohman, M.; Gibson, C.M. Machine learning versus traditional risk stratification methods in acute coronary syndrome: A pooled randomized clinical trial analysis. J. Thromb. Thrombolysis, 2020, 49(1), 1-9.
[http://dx.doi.org/10.1007/s11239-019-01940-8]
[34]
Girija, P.; Sivan, N. Ayurvedic treatment of COVID-19/SARS-CoV-2: A case report. J. Ayurveda Integr. Med., 2020. Advance online publication
[http://dx.doi.org/10.1016/j.jaim.2020.06.001]
[35]
Gupta, M.; Shaw, B.P. Uses of medicinal plants in Panchakarma.Ayurvedic Ther; , 2009. , Corpus ID:29208524.
[36]
Gupta, S.K.; Prakash, J.; Srivastava, S. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian J. Exp. Biol., 2002, 40(7), 765-773.
[37]
Guruprasad, K.P.; Dash, S.; Shivakumar, M.B.; Shetty, P.R.; Raghu, K.S.; Shamprasad, B.R.; Udupi, V.; Acharya, R.V.; Vidya, P.B.; Nayak, J.; Mana, A.E.; Moni, R.; Sankaran, M.T.; Satyamoorthy, K. Influence of Amalaki rasayana on telomerase activity and telomere length in human blood mononuclear cells. J. Ayurveda Integr. Med., 2017, 8(2), 105-112.
[http://dx.doi.org/10.1016/j.jaim.2017.01.007]
[38]
Han, X.; Shen, T.; Lou, H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci., 2007, 8(9), 950-988. PMCID: PMC3871896
[39]
Heinz, S.A.; Henson, D.A.; Austin, M.D.; Jin, F.; Nieman, D.C. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacologic. Res., 2010, 62(3), 237-242.
[http://dx.doi.org/10.1016/j.phrs.2010.05.001]
[40]
Jain, R.; Pandey, R.; Mahant, R.N.; Rathore, D.S. A review on medicinal importance of Emblica officinalis. Int. J. Pharmaceut. Sci. Res., 2015, 6(1), 72. Corpus ID:212586978
[41]
Janice, O.H.L.; Ken-En Gan, S.; Bertoletti, A.; Tan, Y.J. Understanding the T cell immune response in SARS coronavirus infection. Emerging Microbes Infect, 2012, 1(9), e23.
[http://dx.doi.org/10.1038/emi.2012.26]
[42]
Jantan, I.; Haque, M.A.; Ilangkovan, M.; Arshad, L. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Front. Pharmacol., 2019, 10, 878.
[http://dx.doi.org/10.3389/fphar.2019.00878]
[43]
Jean, S.S.; Lee, P.I.; Hsueh, P.R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect., 2020, 53(3), 436-443.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034]
[44]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480]
[45]
Jyotirmoy, S.; Rekha, S.D. Concept of epidemic diseases in ayurveda. IJHRMLP, 2016, 2(01), 24. doi No. : 05.2016-96658645
[46]
Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J., 2005, 24(11), S223-S227.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60]
[47]
Kaleem, Q.M.; Akhtar, M.; Awais, M.M.; Saleem, M.; Zafar, M.; Iqbal, Z.; Muhammad, F.; Anwar, M.I. Studies on Emblica officinalis derived tannins for their immunostimulatory and protective activities against coccidiosis in industrial broiler chickens; Scientif. World J., 2014, p. 378473.
[http://dx.doi.org/10.1155/2014/378473]
[48]
Kapil, A.; Sharma, S. Immunopotentiating compounds from Tinospora cordifolia. J. Ethnopharmacol., 1997, 58(2), 89-95.
[http://dx.doi.org/10.1016/s0378-8741(97)00086-x]
[49]
Kavitha, N.; Patel, K.; Gandhi, T. Effect of aqueous extract of Embelica officinalis on selenite induced cataract in rats. Iranian J. Pharmaceu. Res., 2010, 9(2), 147-152.
[PMID: 24363721]
[50]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7(1), 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X]
[51]
Kindler, E.; Thiel, V. SARS-CoV and IFN: Too little, too late. Cell Host Microbe, 2016, 19(2), 139-141.
[http://dx.doi.org/10.1016/j.chom.2016.01.012]
[52]
Kokate, C.K.; Purohit, A.P.; Gokhale, S.B. Pharmacognosy, 2008, 11, 81-94.
[53]
Kotwal, G.J.; Kaczmarek, J.N.; Leivers, S.; Ghebremariam, Y.T.; Kulkarni, A.P.; Bauer, G.; De Beer, C.; Preiser, W.; Mohamed, A.R. Anti-HIV, anti-poxvirus, and anti-SARS activity of a nontoxic, acidic plant extract from the Trifollium species Secomet-V/antivac suggests that it contains a novel broad-spectrum antiviral. Ann NY Acad. Sci., 2005, 1056(1), 293-302.
[http://dx.doi.org/10.1196/annals.1352.014] [PMID: 16387696]
[54]
Kulatunga, R.D.; Dave, A.R.; Baghel, M.S. Clinical efficacy of Guduchyadi medhya rasayana on senile memory impairment. Ayurveda, 2012, 33(2), 202-208.
[http://dx.doi.org/10.4103/0974-8520.105239]
[55]
Kulkarni, R.; Girish, K.J.; Kumar, A. Nootropic herbs (Medhya rasayana) in Ayurveda: An update. Pharmacog. Rev., 2012, 6(12), 147-153.
[http://dx.doi.org/10.4103/0973-7847.99949]
[56]
Kulkarni, S.K.; Dhir, A. Withaniasomnifera: An Indian ginseng. Progress in neuro-psychopharmacology and biological psychiatry. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(5), 1093-1105.
[http://dx.doi.org/10.1016/j.pnpbp.2007.09.011]
[57]
Kumar, A. Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets; Bems Reports, 2020. https://orcid.org/0000-0001-8422-0219
[58]
Kumar, D.; Arya, V.; Kaur, R.; Bhat, Z.A.; Gupta, V.K.; Kumar, V. A review of immunomodulators in the Indian traditional health care system. J. Microbiol. Immunol. Infect., 2012, 45(3), 165-184.
[http://dx.doi.org/10.1016/j.jmii.2011.09.030]
[59]
Kumar, V.S.; Navaratnam, V. Neem (Azadirachta indica): Prehistory to contemporary medicinal uses to humankind. Asian Pac. J. Trop. Biomed., 2013, 3(7), 505-514.
[http://dx.doi.org/10.1016/S2221-1691(13)60105-7]
[60]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Corona Virus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020., 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924]
[61]
Le Nest, G.; Caille, O.; Woudstra, M.; Roche, S.; Burlat, B.; Belle, V.; Lexa, D. Zn-polyphenol chelation: Complexes with quercetin,(+)-catechin, and derivatives: II Electrochemical and EPR studies. Inorgan. Chim. Acta, 2004, 357(7), 2027-2037.
[http://dx.doi.org/10.1016/j.ica.2003.11.046]
[62]
Li, H.; Liu, S.M.; Yu, X.H.; Tang, S.L.; Tang, C.K. Coronavirus Disease 2019 (COVID-19): Current status and future perspectives. Int. J. Antimicrob. Agents, 2020., 105951. Advance online publication.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951]
[63]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167]
[64]
Lim, T.K. Glycyrrhiza glabra. Edible medicinal and non-medicinal plants: Modified stems, roots. Bulbs, 2015, 10, 354-457.
[65]
Lopes, B.R.P.; da Costa, M.F.; Genova, R.A.; da Silva, T.F.; Lima, C.S.; Caruso, I.P.; de Araujo, G.C.; Kubo, L.H.; Iacovelli, F.; Falconi, M.; Desideri, A.; de Oliveira, J.; Regasini, L.O.; de Souza, F.P.; Toledo, K.A. Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion. Virus Res, 2020, 276, 197805. Epub 2019 Nov 9.
[http://dx.doi.org/10.1016/j.virusres.2019.197805] [PMID: 31712123]
[66]
Lotfi, M.; Hamblin, M.R.; Rezaei, N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta, 2020, 508, 254-266. Advance online publication
[http://dx.doi.org/10.1016/j.cca.2020.05.044]
[67]
Lucas, S.; Leach, M.; Kumar, S. Complementary and alternative medicine utilisation for the management of acute respiratory tract infection in children: A systematic review. Complement. Ther. Med., 2018, 37, 158-166.
[http://dx.doi.org/10.1016/j.ctim.2018.03.001]
[68]
Madhuri, S.; Pandey, G.; Verma, K.S. Antioxidant, immunomodulatory and anticancer activities of Emblica officinalis: An overview. Int. Res. J. Pharm., 2011, 2(8), 38-42.
[http://dx.doi.org/10.5455/spatula.20121112072137]
[69]
Malik, F.; Singh, J.; Khajuria, A.; Suri, K.A.; Satti, N.K.; Singh, S.; Kaul, M.K.; Kumar, A.; Bhatia, A.; Qazi, G.N. A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci. 2007, 80(16), 1525-1538. Epub 2007 Jan 25
[http://dx.doi.org/10.1016/j.lfs.2007.01.029] [PMID: 17336338]
[70]
Mallikarjun, S.; Rao, A.; Rajesh, G.; Shenoy, R.; Pai, M. Antimicrobial efficacy of Tulsi leaf (Ocimum sanctum) extract on periodontal pathogens: An in vitro study. J. Indian Soc. Periodontol., 2016, 20(2), 145-150.
[http://dx.doi.org/10.4103/0972-124X.175177]
[71]
Mamedov, N.A.; Egamberdieva, D. Phytochemical constituents and pharmacological effects of licorice: A review. Plant Human Health, 2019, 3, 1-21.
[http://dx.doi.org/10.1007/978-3-030-04408-4_1]
[72]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 197989 Advance online publication
[http://dx.doi.org/10.1016/j.virusres.2020.197989]
[73]
Maurya, R. Withanolides: A prospective drug for infectious and tropical diseases.In Science of Ashwagandha: Preventive and Therapeutic Potentials; Springer: Cham, 2017, pp. 105-120.
[74]
Messier, C.; Grenier, D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54(6), e801-e806.
[http://dx.doi.org/10.1111/j.1439-0507.2011.02028.x]
[75]
Ministry of Health India:. Ministry of Ayush, Ayurveda’s immunity boosting measures for self-care during COVID 19 crisis. 2020.https://www.ayush.gov.in/docs/123.pdf
[76]
Mirjalili, M.H.; Moyano, E.; Bonfill, M.; Cusido, R.M.; Palazón, J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 2009, 14(7), 2373-2393.
[http://dx.doi.org/10.3390/molecules14072373]
[77]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecule, 2016, 21(5), 623.
[http://dx.doi.org/10.3390/molecules21050623]
[78]
Nair, P.R.; Melnick, S.J.; Ramachandran, R.; Escalon, E.; Ramachandran, C. Mechanism of macrophage activation by (1, 4)-α-D-glucan isolated from Tinospora cordifolia. Int. Immunopharmacol., 2006, 6(12), 1815-1824.
[http://dx.doi.org/10.1016/j.intimp.2006.07.028]
[79]
Negi, J.S.; Singh, P.; Joshi, G.P.; Rawat, M.S.; Bisht, V.K. Chemical constituents of Asparagus. Pharmacog. Rev., 2010, 4(8), 215-220.
[http://dx.doi.org/10.4103/0973-7847.70921]
[80]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2?; Nat. Products Bioprosp, 2020, pp. 1-16.
[http://dx.doi.org/10.1007/s13659-020-00250-4]
[81]
Pandey, V.; Ansari, W.A.; Misra, P.; Atri, N. Withania somnifera: Advances and implementation of molecular and tissue culture techniques to enhance its application. Front. Plant Sci., 2017, 8, 1390.
[http://dx.doi.org/10.3389/fpls.2017.01390]
[82]
Pandey, V.; Ansari, M.W.; Tula, S.; Sahoo, R.K.; Bains, G.; Kumar, J.; Tuteja, N.; Shukla, A. Ocimum sanctum leaf extract induces drought stress tolerance in rice. Plant Signal. Behav., 2016, 11(5), e1150400.
[http://dx.doi.org/10.1080/15592324.2016.1150400]
[83]
Panchabhai, T.S.; Kulkarni, U.P.; Rege, N.N. Validation of therapeutic claims of Tinospora cordifolia: A review. Phytother. Res., 2008, 22(4), 425-441.
[http://dx.doi.org/10.1002/ptr.2347]
[84]
Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M. (2018). Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res., 2018, 32(12), 2323-2339.
[http://dx.doi.org/10.1002/ptr.6178]
[85]
Pattanayak, P.; Behera, P.; Das, D.; Panda, S.K. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 2010, 4(7), 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323]
[86]
Phan, T. Novel coronavirus: From discovery to clinical diagnostics; Infect. Genet. Evolut, 2020, p. 104211.
[http://dx.doi.org/10.1016/j.meegid.2020.104211]
[87]
Pise, M.V.; Rudra, J.A.; Upadhyay, A. Immunomodulatory potential of shatavarins produced from Asparagus racemosus tissue cultures. J. Nat. Sci., Biol., Med., 2015, 6(2), 415-420.
[http://dx.doi.org/10.4103/0976-9668.160025]
[88]
Polansky, H.; Lori, G. Coronavirus disease 2019 (COVID-19): First indication of efficacy of Gene-Eden-VIR/Novirin in SARS-CoV-2 infection. Int. J. Antimicrob. Agents, 2020., 105971.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105971]
[89]
Pooladanda, V.; Thatikonda, S.; Godugu, C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci., 2020, 254, 117765.
[http://dx.doi.org/10.1016/j.lfs.2020.117765]
[90]
Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med., 2008, 14(5-6), 353-357.
[http://dx.doi.org/10.2119/2008-00033.Prasad]
[91]
Prasad, A.; Muthamilarasan, M.; Prasad, M. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep., 2020, 1-6.
[http://dx.doi.org/10.1007/s00299-020-02560-w]
[92]
Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol., 2020, 38(1), 1-9.
[http://dx.doi.org/10.12932/AP-200220-0772]
[93]
Rastogi, S.; Pandey, D.N.; Singh, R.H. COVID-19 Pandemic: A pragmatic plan for Ayurveda intervention. J. Ayurveda Integr. Med., 2020.
[http://dx.doi.org/10.1016/j.jaim.2020.04.002]
[94]
Rojas, Á.; Del Campo, J.A.; Clement, S.; Lemasson, M.; García-Valdecasas, M.; Gil-Gómez, A.; Negro, F. Effect of quercetin on hepatitis C virus life cycle: From viral to host targets. Scientif. Rep., 2016, 6(1), 1-9.
[http://dx.doi.org/10.1038/srep31777]
[95]
Saeed, M.; Naveed, M.; Leskovec, J.; Ali, K.A.; Kakar, I.; Ullah, K.; Ahmad, F.; Sharif, M.; Javaid, A.; Rauf, M.; Abd El-Hack, M.E.; Abdel-Latif, M.A.; Chao, S. Using guduchi (Tinospora cordifolia) as an eco-friendly feed supplement in human and poultry nutrition. Poult Sci., 2020, 99(2), 801-811.
[http://dx.doi.org/10.1016/j.psj.2019.10.051] [PMID: 32029162]
[96]
Saharkhiz, M.J.; Kamyab, A.A.; Kazerani, N.K.; Zomorodian, K.; Pakshir, K.; Rahimi, M.J. Chemical compositions and antimicrobial activities of Ocimum sanctum L. essential oils at different harvest stages. Jundishapur J. Microbiol., 2014, 8(1), e13720.
[http://dx.doi.org/10.5812/jjm.13720]
[97]
Sancheti, G.; Jindal, A.; Kumari, R.; Goyal, P.K. Chemopreventive action of emblicaofficinalis on skin carcinogenesis in mice. Asian Pac. J. Cancer Prevent., 2005, 6(2), 197-201.
[PMID: 16101333]
[98]
Sandhya, S.; Sushil, K. Withania somnifera: The Indian Ginseng ashwagandha. Central Institute of Medicinal and Aromatic Plants; Lucknow, India: Central Institute of Medicinal and Aromatic Plants, 1998.
[99]
Savarino, A.; Boelaert, J.R.; Cassone, A.; Majori, G.; Cauda, R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect. Dis., 2003, 3(11), 722-727.
[http://dx.doi.org/10.1016/s1473-3099(03)00806-5]
[100]
Singh, P.; Guleri, R.; Angurala, A.; Kaur, K.; Kaur, K.; Kaul, S.C.; Wadhwa, R.; Pati, P.K. Addressing challenges to enhance the bioactives of withaniasomnifera through organ, tissue, and cell culture based approaches. BioMed. Res. Int., 2017., 3278494.
[http://dx.doi.org/10.1155/2017/3278494]
[101]
Singh, R. Asparagus racemosus: A review on its phytochemical and therapeutic potential. Nat. Prod. Res., 2016, 30(17), 1896-1908.
[http://dx.doi.org/10.1080/14786419.2015.1092148]
[102]
Singh, R.H.; Rastogi, S. Rasayana therapy and rejuvenation.In Evidence-Based Practice in Complementary and Alternative Medicine; Springer, 2012, pp. 177-189.
[103]
Sivagurunathan, A.; Innocent, B.X.; Gurusaraswathi, S.; Mariappan, A. Immunostimulatory potential of dietary amla (Phyllanthus emblica) in growth and haematology of Tilapia mossambicus challenged with Pseudomonas aeruginosa. AGRIS, Int. Res. J. Pharm., 2013.https://agris.fao.org/agris-search/search.do?recordID=AV2012094451
[104]
Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 2019, 11(1), 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[105]
Srivastava, P.L.; Shukla, A.; Kalunke, R.M. Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus. Scientif. Rep., 2018, 8(1), 9098.
[http://dx.doi.org/10.1038/s41598-018-27440-y]
[106]
Sun, L.; Xing, Y.; Chen, X.; Zheng, Y.; Yang, Y.; Nichols, D.B.; Chen, Z. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. Plos One, 2012, 7(2)
[http://dx.doi.org/10.1371/journal.pone.0030802]
[107]
Taghizadeh-Hesary, F.; Akbari, H. The powerful immune system against powerful COVID-19: A hypothesis. Med. Hypotheses, 2020., 109762.
[http://dx.doi.org/10.1016/j.mehy.2020.109762]
[108]
Tarasiuk, A.; Mosińska, P.; Fichna, J. Triphala: Current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chinese Med., 2018, 13, 39.
[http://dx.doi.org/10.1186/s13020-018-0197-6]
[109]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 1-12.
[http://dx.doi.org/10.1038/s41577-020-0311-8]
[110]
TeVelthuis, A.J.; van den Worm, S.H.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 2010, 6(11), e1001176.
[http://dx.doi.org/10.1371/journal.ppat.1001176]
[111]
Tewary, A.; Patra, B.C. Use of vitamin C as an immunostimulant. Effect on growth, nutritional quality, and immune response of Labeorohita (Ham.). Fish Physiol. Biochem., 2008, 34(3), 251-259.
[http://dx.doi.org/10.1007/s10695-007-9184-z]
[112]
Tillu, G.; Chaturvedi, S.; Chopra, A.; Patwardhan, B. Public health approach of ayurveda and yoga for COVID-19 prophylaxis. J. Altern. Complement. Med., 2020.
[http://dx.doi.org/10.1089/acm.2020.0129]
[113]
Tiwari, V.; Darmani, N.A.; Yue, B.Y.; Shukla, D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother. Res., 2010, 24(8), 1132-1140.
[http://dx.doi.org/10.1002/ptr.3085]
[114]
Tobaiqy, M.; Qashqary, M.; Al-Dahery, S.; Mujallad, A.; Hershan, A.A.; Kamal, M.A.; Helmi, N. Therapeutic management of COVID-19 patients: A systematic review; Infect. Prev. Prac., 2020, p. 100061.
[http://dx.doi.org/10.1101/2020.04.02.20051029]
[115]
Tripathi, J.S.; Singh, R.H. The concept and practice of immunomodulation in ayurveda and the role of rasayanas as immunomodulators. Ancient Sci. Life, 1999, 19(1-2), 59.
[PMID: 22556921]
[116]
Tu, H.; Tu, S.; Gao, S.; Shao, A.; Sheng, J. The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J. Infect., 2020, S0163-4453(20)30222-X.
[http://dx.doi.org/10.1016/j.jinf.2020.04.011]
[117]
Upadhyay, A.K.; Kumar, K.; Kumar, A.; Mishra, H.S. Tinosporacordi folia (Willd.) Hook.f. and Thoms. (Guduchi) - validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res., 2010, 1(2), 112-121.
[http://dx.doi.org/10.4103/0974-7788.64405]
[118]
Upadhyay, S.; Phukan, U.J.; Mishra, S.; Shukla, R.K. De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics, 2014, 15(1), 746.
[http://dx.doi.org/10.1186/1471-2164-15-746]
[119]
Usharani, P.; Merugu, P.L.; Nutalapati, C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: A randomised, double blind, placebo controlled clinical study. BMC Complement. Altern. Med., 2019, 19(1), 97.
[http://dx.doi.org/10.1186/s12906-019-2509-5]
[120]
U.S. Food and Drug Administration: (U.S. Food & Drug Administration, FDA cautions against use of Hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. (Drugs, Safety-issues, Errors, and Problems, Infectious disease Coronavirus, 07/01/2020). 2020.https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or
[121]
U.S. National Library of Medicine. ClinicalTrials.gov.in: NCT04326725, 2020.https://clinicaltrials.gov/ct2/show/NCT04326725
[122]
Valencia, D.N. Brief review on COVID-19: The 2020 pandemic caused by SARS-CoV-2. Cureus, 2020, 12(3), e7386.
[http://dx.doi.org/10.7759/cureus.7386]
[123]
Varshney, A.; Balkrishna, A.; Singh, J. Withanone from Withania somnifera may inhibit novel Coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor; Res. Square, 2020.
[http://dx.doi.org/10.21203/rs.3.rs-17806/v1]
[124]
Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Rajagopalan, K. COVID-19: A promising cure for the global panic. Sci. Total Environ., 2020., 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277]
[125]
Wangchuk, P.; Yeshi, K.; Jamphel, K. Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. Integr. Med. Res., 2017, 6(4), 372-387.
[http://dx.doi.org/10.1016/j.imr.2017.08.002]
[126]
Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharmaceut. Sinic. B, 2015, 5(4), 310-315.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005]
[127]
World Health Organization. (2020a). Infection prevention and control during healthcare when novel coronavirus (nCoV) infection is suspected, (No. WHO/2019-nCoV/IPC/2020.3). Department of Communications, World Health Organization Global. 19 March 2020.
[128]
World Health Organization. (2020b): Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations: Scientific brief, (No. WHO / 2019-nCoV / Sci_Brief / Transmission_modes / 2020.1).World Health Organization.27 March 2020.
[129]
Widmann, F.K. An introduction to clinical immunology. J. Exp. Meal., 1987, 166(173), 181.
[130]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; & Yang, J. Quercetin as an antiviral agent inhibits Influenza A Virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006]
[131]
Xu, T.; Jiang, X.; Denton, D.; Kumar, S. Ecdysone controlled cell and tissue deletion. Cell Death Differ., 2020, 27(1), 1-14.
[http://dx.doi.org/10.1038/s41418-019-0456-9]
[132]
Xue, J.; Moyer, A.; Peng, B.; Wu, J.; Hannafon, B.N.; Ding, W.Q. Chloroquine is a zinc ionophore. PloS One, 2014, 9(10), e109180.
[http://dx.doi.org/10.1371/journal.pone.0109180]
[133]
Yang, Y.; Peng, F.; Wang, R.; Yange, M.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J. Autoimmun., 2020, 109, 102434. Erratum in: J. Autoimmun., 2020, 111, 102487. Epub 2020 Mar 3.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[134]
Yan, Y.; Shin, W.I.; Pang, Y.X.; Meng, Y.; Lai, J.; You, C.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: Recent advances, prevention, and treatment. Int. J. Environ. Res. Public Health, 2020, 17(7), 2323.
[http://dx.doi.org/10.3390/ijerph17072323] [PMID: 32235575]
[135]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560]
[136]
Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PloS One, 2020, 15(7), e0235458.
[http://dx.doi.org/10.1371/journal.pone.0235458] [PMID: 32645044]
[137]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005]
[138]
Zhao, T.; Sun, Q.; Marques, M.; Witcher, M. Anticancer properties of Phyllanthus emblica (Indian Gooseberry). Oxidat. Med. Cellul. Longev., 2015., 950890.
[http://dx.doi.org/10.1155/2015/950890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy