Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Photocatalytic Inactivation of Bioaerosols: A Short Review on Emerging Technologies

Author(s): Nadia Riaz*, Muhammad Saqib Khan, Muhammad Bilal, Sami Ullah and Abdullah G. Al‐Sehemi

Volume 17, Issue 1, 2021

Published on: 29 July, 2020

Page: [31 - 37] Pages: 7

DOI: 10.2174/1573411016999200729115254

Price: $65

Abstract

Background: Formation of the microbial colonies in the wet and damp environment affects the indoor air quality thus posing severe threats to human health. Health problems or Building- associated illness (any disease or infection) caused by being in a closed space or building are generally separated into two categories including building-related illness (BRI) and sick building syndrome (SBS). Considered by Pathognomy research, that biological pollutants or bioaerosols (bacteria, fungi and viruses like coronavirus), are the significant inducement for “sick building syndrome (SBS)” associated with a group of mucosal, skin, and general symptoms, characterized by tiredness; headaches; irritation of skin, nose, eyes, throat and mucous membranes, most prevalent in buildings like residential and occupational like offices, schools, hotels and hospitals.

Methods: Currently outdoor air purging, UV light activated air filters, chemical treatment like ozonation and oxidation, are used for the improvement of indoor air quality but these treatment techniques not only produce secondary biological pollutants but are also costly and not effective for a variety of microorganisms. In recent years, nanomaterials in the area of heterogeneous photocatalysis have gained much attention because of their enhanced physicochemical properties including particle size, surface area, dopant dispersion and interaction with the support (Titanium).

Results: Heterogeneous photocatalysis systems have been reported to produce self-cleaning materials and to solve a range of environmental problems like air and water detoxification. Among various heterogeneous photocatalysts, TiO2 gained much attention due to its non-toxic nature, high stability, excellent photocatalytic ability, self-cleaning and antibacterial properties and most of all low cost and commercial availability. It is among the basic materials being used in various commercial products like as white pigment in paints for building coating. The antibacterial properties are associated with the generation of reactive oxygen species (ROS) in the presence of a light source.

Conclusion: Some of the reported TiO2 nanomaterials-based air-filters and building coatings are reported with the major drawbacks like lower surface area, inactivation in the absence of light (dark) and activation only under UV light irradiation. Thus, the requirement for cost effective, safer and energy efficient materials is the need of the day.

Keywords: Antibacterial activities, bioaerosols, coronavirus, photocatalysis, Reactive Oxygen Species (ROS), sick building syndrome, titanium.

Graphical Abstract

[1]
Zhang, Y.; Mo, J.; Li, Y.; Sundell, J.; Wargocki, P.; Zhang, J.; Little, J.C.; Corsi, R.; Deng, Q.; Leung, M.H.K.; Fang, L.; Chen, W.; Li, J.; Sun, Y. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos Environ (1994), 2011, 45(26), 4329-4343.
[http://dx.doi.org/10.1016/j.atmosenv.2011.05.041] [PMID: 32362761]
[2]
Heft-Neal, S.; Burney, J.; Bendavid, E.; Burke, M. Robust relationship between air quality and infant mortality in Africa. Nature, 2018, 559(7713), 254-258.
[http://dx.doi.org/10.1038/s41586-018-0263-3] [PMID: 29950722]
[3]
Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; Feigin, V.; Freedman, G.; Hubbell, B.; Jobling, A.; Kan, H.; Knibbs, L.; Liu, Y.; Martin, R.; Morawska, L.; Pope, C.A., III; Shin, H.; Straif, K.; Shaddick, G.; Thomas, M.; van Dingenen, R.; van Donkelaar, A.; Vos, T.; Murray, C.J.L.; Forouzanfar, M.H. . Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 2017, 389(10082), 1907-1918.
[http://dx.doi.org/10.1016/S0140-6736(17)30505-6] [PMID: 28408086]
[4]
Hospitals, O. What are the causes and effects of Indoor Air Pollution? O. H. I. H. P., Ed, 2019.
[5]
Goswami, D.Y. Decontamination of ventilation systems using photocatalytic air cleaning technology. J. Sol. Energy Eng., 2003, 125(3), 359-365.
[http://dx.doi.org/10.1115/1.1592540]
[6]
Chen, F.; Yang, X.; Mak, H.K.; Chan, D.W. Photocatalytic oxidation for antimicrobial control in built environment: a brief literature overview. Build. Environ., 2010, 45(8), 1747-1754.
[http://dx.doi.org/10.1016/j.buildenv.2010.01.024]
[7]
Pacheco-Torgal, F.; Jalali, S. Nanotechnology: advantages and drawbacks in the field of construction and building materials. Constr. Build. Mater., 2011, 25(2), 582-590.
[http://dx.doi.org/10.1016/j.conbuildmat.2010.07.009]
[8]
Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ., 2015, 118, 145-156.
[http://dx.doi.org/10.1016/j.atmosenv.2015.07.028]
[9]
Coleman, K.K.; Sigler, W.V. Airborne Influenza A Virus Exposure in an Elementary School. Sci. Rep., 2020, 10(1), 1859.
[http://dx.doi.org/10.1038/s41598-020-58588-1] [PMID: 32024882]
[10]
Seltzer, J.M. Biological contaminants. J. Allergy Clin. Immunol., 1994, 94(2 Pt 2), 318-326.
[http://dx.doi.org/10.1053/ai.1994.v94.a56011] [PMID: 8077585]
[11]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[12]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[13]
Simmons, R.B.; Price, D.L.; Noble, J.A.; Crow, S.A.; Ahearn, D.G. Fungal colonization of air filters from hospitals. Am. Ind. Hyg. Assoc. J., 1997, 58(12), 900-904.
[http://dx.doi.org/10.1080/15428119791012252] [PMID: 9425652]
[14]
Nelson, H.S.; Hirsch, S.R.; Ohman, J.L., Jr; Platts-Mills, T.A.; Reed, C.E.; Solomon, W.R. Recommendations for the use of residential air-cleaning devices in the treatment of allergic respiratory diseases. J. Allergy Clin. Immunol., 1988, 82(4), 661-669.
[http://dx.doi.org/10.1016/0091-6749(88)90980-3] [PMID: 3171006]
[15]
Barn, P.; Larson, T.; Noullett, M.; Kennedy, S.; Copes, R.; Brauer, M. Infiltration of forest fire and residential wood smoke: An evaluation of air cleaner effectiveness. J. Expo. Sci. Environ. Epidemiol., 2008, 18(5), 503-511.
[http://dx.doi.org/10.1038/sj.jes.7500640] [PMID: 18059421]
[16]
Lin, C-Y.; Li, C-S. Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Sci. Technol., 2003, 37(12), 939-946.
[http://dx.doi.org/10.1080/02786820300900]
[17]
Milosevic, I.; Jayaprakash, A.; Greenwood, B.; van Driel, B.; Rtimi, S.; Bowen, P. Synergistic effect of fluorinated and N doped TiO2 nanoparticles leading to different microstructure and enhanced photocatalytic bacterial inactivation. Nanomaterials (Basel), 2017, 7(11), 391.
[http://dx.doi.org/10.3390/nano7110391] [PMID: 29140308]
[18]
Gupta, K.; Singh, R.P.; Pandey, A.; Pandey, A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol., 2013, 4(1), 345-351.
[http://dx.doi.org/10.3762/bjnano.4.40] [PMID: 23844339]
[19]
Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S.; Bartlett, J.; Nolan, M.; Pillai, S. Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Appl. Sci. (Basel), 2018, 8(11), 2067.
[http://dx.doi.org/10.3390/app8112067]
[20]
Huang, S-M.; Weng, C-H.; Tzeng, J-H.; Huang, Y-Z.; Anotai, J.; Yen, L-T.; Chang, C-J.; Lin, Y-T. Photocatalytic inactivation of Klebsiella pneumoniae by visible-light-responsive N/C-doped and N-tourmaline/palladium-C-codoped TiO2. Chem. Eng. J., 2020, 379122345
[http://dx.doi.org/10.1016/j.cej.2019.122345]
[21]
Nakano, R.; Hara, M.; Ishiguro, H.; Yao, Y.; Ochiai, T.; Nakata, K.; Murakami, T.; Kajioka, J.; Sunada, K.; Hashimoto, K. Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts, 2013, 3(1), 310-323.
[http://dx.doi.org/10.3390/catal3010310]
[22]
Fukuda, T.; Imamura, Y.; Maeda, M.; Satou, T.; Oonaka, M.; Morita, H. Bactericidal activity of copper-containing sulfur-doped TiO2 against Staphylococcus aureus under visible-light illumination. J. Environ. Biotechnol, 2009, 9, 37-41.
[23]
Venieri, D.; Fraggedaki, A.; Kostadima, M.; Chatzisymeon, E.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Solar light and metal-doped TiO2 to eliminate water-transmitted bacterial pathogens: Photocatalyst characterization and disinfection performance. Appl. Catal. B, 2014, 154-155, 93-101.
[http://dx.doi.org/10.1016/j.apcatb.2014.02.007]
[24]
Sanitnon, P.; Chiarakorn, S.; Chawengkijwanich, C.; Chuangchote, S.; Pongprayoon, T. Synergistic effects of zirconium and silver co-dopants in TiO2 nanoparticles for photocatalytic degradation of an organic dye and antibacterial activity. J. Aust. Ceram. Soc., 2020, 56, 579-590.
[http://dx.doi.org/10.1007/s41779-019-00368-w]
[25]
Kőrösi, L.; Dömötör, D.; Beke, S.; Prato, M.; Scarpellini, A.; Meczker, K.; Schneider, G.; Kovács, T.; Kovács, Á.; Papp, S. Antibacterial activity of nanocrystalline TiO2 (B) on multiresistant Klebsiella pneumoniae strains. Sci. Adv. Mater., 2013, 5(9), 1184-1192.
[http://dx.doi.org/10.1166/sam.2013.1571]
[26]
Petronella, F.; Truppi, A.; Striccoli, M.; Curri, M.L.; Comparelli, R. R. Photocatalytic Application of Ag/TiO2 Hybrid Nanoparticles.Noble Metal-Metal Oxide Hybrid Nanoparticles; Mohapatra, S.; Nguyen, T.A.; Nguyen-Tri, P., Eds.; Woodhead Publishing , 2019; pp. 373-394.
[http://dx.doi.org/10.1016/B978-0-12-814134-2.00018-8]
[27]
Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Mol. Liq., 2018, 258, 354-365.
[http://dx.doi.org/10.1016/j.molliq.2017.11.030]
[28]
Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun., 2019, 10(1), 2177.
[http://dx.doi.org/10.1038/s41467-019-10218-9] [PMID: 31097709]
[29]
Xie, J.; Zuo, Y.; Lv, J.; Jiang, T.; Liu, C.; Xu, H.; Wang, L.; Gao, S.; Ma, C.; Jin, J. Bio-mediated synthesis and antibacterial activity against aquatic pathogens of silver nanoparticles decorated titania nanosheets in dark and under solar-light irradiation. Mater. Technol., 2018, 33(8), 532-542.
[http://dx.doi.org/10.1080/10667857.2018.1480584]
[30]
Hossain, M.A.; Elias, M.; Sarker, D.R.; Diba, Z.R.; Mithun, J.M.; Azad, M.A.K.; Siddiquey, I.A.; Rahman, M.M.; Uddin, J.; Uddin, M.N. Synthesis of Fe- or Ag-doped TiO2-MWCNT nanocomposite thin films and their visible-light-induced catalysis of dye degradation and antibacterial activity. Res. Chem. Intermed., 2018, 44(4), 2667-2683.
[http://dx.doi.org/10.1007/s11164-018-3253-z]
[31]
Riaz, N.; Hassan, M.; Siddique, M.; Mahmood, Q.; Farooq, U.; Sarwar, R.; Khan, M.S. Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: Effect of synthesis and operational parameters. Environ. Sci. Pollut. Res. Int., 2020, 27(3), 2992-3006.
[http://dx.doi.org/10.1007/s11356-019-06727-1] [PMID: 31838680]
[32]
Kőrösi, L.; Prato, M.; Scarpellini, A.; Kovács, J.; Dömötör, D.; Kovács, T.; Papp, S. H2O2-assisted photocatalysis on flower-like rutile TiO2 nanostructures: Rapid dye degradation and inactivation of bacteria. Appl. Surf. Sci., 2016, 365, 171-179.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.247]
[33]
Kryukova, G.N.; Zenkovets, G.A.; Shutilov, A.A.; Wilde, M.; Günther, K.; Fassler, D.; Richter, K. Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light. Appl. Catal. B, 2007, 71(3-4), 169-176.
[http://dx.doi.org/10.1016/j.apcatb.2006.06.025]
[34]
Iftikhar, A.; Khan, M.S.; Rashid, U.; Mahmood, Q.; Zafar, H.; Bilal, M.; Riaz, N. Influence of metallic species for efficient photocatalytic water disinfection: Bactericidal mechanism of in vitro results using docking simulation. Environ. Sci. Pollut. Res. Int., 2020, 27(32), 39819-39831.
[http://dx.doi.org/10.1007/s11356-020-08974-z] [PMID: 32356068]
[35]
Ahmad Barudin, N.H.; Sreekantan, S.; Ong, M.T.; Lai, C.W. Synthesis, characterization and comparative study of nano-Ag-TiO2 against Gram-positive and Gram-negative bacteria under fluorescent light. Food Control, 2014, 46, 480-487.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.046]
[36]
Rengifo-Herrera, J.A.; Pulgarin, C. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol. Energy, 2010, 84(1), 37-43.
[http://dx.doi.org/10.1016/j.solener.2009.09.008]
[37]
Del Curto, B.; Tarsini, P.; Cigada, A. Development of a photocatalytic filter to control indoor air quality. J. Appl. Biomater. Funct. Mater., 2016, 14(4), e496-e501.
[http://dx.doi.org/10.5301/jabfm.5000336] [PMID: 27809331]
[38]
Özkalel, İ.M.; Erdem, A. Factors promoting Staphylococcus auerus disinfection by TiO2, SiO2 and AG nanoparticles. Online J. Sci. Technol., 2017, 7(2), 51-55.
[39]
Chen, Y.C.; Liao, C.H.; Shen, W.T.; Su, C.; Wu, Y.C.; Tsai, M.H.; Hsiao, S.S.; Yu, K.P.; Tseng, C.H. Effective disinfection of airborne microbial contamination in hospital wards using a zero-valent nano-silver/TiO2 -chitosan composite. Indoor Air, 2019, 29(3), 439-449.
[http://dx.doi.org/10.1111/ina.12543] [PMID: 30738001]
[40]
Ikram, M.; Umar, E.; Raza, A.; Haider, A.; Naz, S.; Ul-Hamid, A.; Haider, J.; Shahzadi, I.; Hassan, J.; Ali, S. Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO2 nanoparticles. RSC Advances, 2020, 10(41), 24215-24233.
[http://dx.doi.org/10.1039/D0RA04851H]
[41]
Vijayaraghavan, R. Zinc oxide based inorganic antimicrobial agents. Int. J. Sci. Res. (Ahmedabad), 2012, 1(2), 35-46.
[42]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149)1230444
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[43]
DeCoste, J.B.; Peterson, G.W. Metal-organic frameworks for air purification of toxic chemicals. Chem. Rev., 2014, 114(11), 5695-5727.
[http://dx.doi.org/10.1021/cr4006473] [PMID: 24750116]
[44]
Barea, E.; Montoro, C.; Navarro, J.A.R. Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev., 2014, 43(16), 5419-5430.
[http://dx.doi.org/10.1039/C3CS60475F] [PMID: 24705539]
[45]
Zhang, Y.; Yuan, S.; Feng, X.; Li, H.; Zhou, J.; Wang, B. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J. Am. Chem. Soc., 2016, 138(18), 5785-5788.
[http://dx.doi.org/10.1021/jacs.6b02553] [PMID: 27090776]
[46]
Chen, Y.; Zhang, S.; Cao, S.; Li, S.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J.; Feng, X.; Ma, X.; Wang, B. roll-to-roll production of metal-organic framework coatings for particulate matter removal. Adv. Mater., 2017, 29(15)1606221
[http://dx.doi.org/10.1002/adma.201606221] [PMID: 28102553]
[47]
Crake, A.; Christoforidis, K.C.; Kafizas, A.; Zafeiratos, S.; Petit, C. CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation. Appl. Catal. B, 2017, 210, 131-140.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.039]
[48]
Liu, C.; Hsu, P-C.; Lee, H-W.; Ye, M.; Zheng, G.; Liu, N.; Li, W.; Cui, Y. Transparent air filter for high-efficiency PM 2.5 capture. Nat. Commun., 2015, 6(1), 1-9.
[49]
Zhang, X.; Zhang, W.; Yi, M.; Wang, Y.; Wang, P.; Xu, J.; Niu, F.; Lin, F. High-performance inertial impaction filters for particulate matter removal. Sci. Rep., 2018, 8(1), 4757.
[http://dx.doi.org/10.1038/s41598-018-23257-x] [PMID: 29555991]
[50]
Korves, T.M.; Piceno, Y.M.; Tom, L.M.; Desantis, T.Z.; Jones, B.W.; Andersen, G.L.; Hwang, G.M. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis. Indoor Air, 2013, 23(1), 50-61.
[http://dx.doi.org/10.1111/j.1600-0668.2012.00787.x] [PMID: 22563927]
[51]
Chuaybamroong, P.; Chotigawin, R.; Supothina, S.; Sribenjalux, P.; Larpkiattaworn, S.; Wu, C.Y. Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air, 2010, 20(3), 246-254.
[http://dx.doi.org/10.1111/j.1600-0668.2010.00651.x] [PMID: 20573124]
[52]
Zhang, T.; Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 2014, 43(16), 5982-5993.
[http://dx.doi.org/10.1039/C4CS00103F] [PMID: 24769551]
[53]
Fang, Y.; Ma, Y.; Zheng, M.; Yang, P.; Asiri, A.M.; Wang, X. Metal-organic frameworks for solar energy conversion by photoredox catalysis. Coord. Chem. Rev., 2018, 373, 83-115.
[http://dx.doi.org/10.1016/j.ccr.2017.09.013]
[54]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Sagir, M.; Abdul Kareem, F.A.; Elkhalifah, A.E.I.; Mukhtar, A.; Gonfa, G. Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4. Microporous Mesoporous Mater., 2019, 288109569
[http://dx.doi.org/10.1016/j.micromeso.2019.109569]
[55]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Gonfa, G.; Mukhtar, A.; Abdul Kareem, F.A.; Ayoub, M.; Saqib, S.; Mellon, N.B. Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; An experimental, isotherm modeling and thermodynamic study. Microporous Mesoporous Mater., 2020, 294109844
[http://dx.doi.org/10.1016/j.micromeso.2019.109844]
[56]
Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Abdul Kareem, F.A.; Mukhtar, A.; Ayoub, M.; Gonfa, G. Synthesis and characterization of iso-reticular metal-organic Framework-3 (IRMOF-3) for CO2/CH4 adsorption: Impact of post-synthetic aminomethyl propanol (AMP) functionalization. J. Nat. Gas Sci. Eng., 2019, 72103014
[http://dx.doi.org/10.1016/j.jngse.2019.103014]
[57]
Ullah, S.; Bustam, M.A.; Al-Sehemi, A.G.; Assiri, M.A.; Abdul Kareem, F.A.; Mukhtar, A.; Ayoub, M.; Gonfa, G. Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous Mesoporous Mater., 2020, 296110002
[http://dx.doi.org/10.1016/j.micromeso.2020.110002]
[58]
Xu, H-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S-H.; Jiang, H-L. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J. Am. Chem. Soc., 2015, 137(42), 13440-13443.
[http://dx.doi.org/10.1021/jacs.5b08773] [PMID: 26434687]
[59]
Liu, Y.; Howarth, A.J.; Hupp, J.T.; Farha, O.K. Selective Photooxidation of a mustard-gas simulant catalyzed by a porphyrinic metal-organic framework. Angew. Chem. Int. Ed. Engl., 2015, 54(31), 9001-9005.
[http://dx.doi.org/10.1002/anie.201503741] [PMID: 26083551]
[60]
Majeed, I.; Nadeem, M.A.; Badshah, A.; Kanodarwala, F.K.; Ali, H.; Khan, M.A.; Stride, J.A.; Nadeem, M.A. Titania supported MOF-199 derived Cu-Cu2O nanoparticles: Highly efficient non-noble metal photocatalysts for hydrogen production from alcohol-water mixtures. Catal. Sci. Technol., 2017, 7(3), 677-686.
[http://dx.doi.org/10.1039/C6CY02328B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy