Abstract
Background: Bulk generated textile wastewater loaded with dyes is posing a stern threat to aquatic health, especially when dumped without prior treatment. Lignocellulosic waste based activated carbon (AC) and Titania (TiO2) suspension can constitute the emerging technological solution.
Objectives: Best lignocellulosic precursor biomass, Melia azedarach (Darek sawdust - DSD), was selected for ortho-phosphoric acid impregnated AC production and novel AC-DSD-TiO2 nanocomposite was developed. AC-DSD and AC-DSD-TiO2 nanocomposites were employed for reactive orange 16 (RO16) dye adsorption in batch and decoloration in photocatalytic reactors, respectively. Methods: Materials were characterized by Scanning electron microscope (SEM), energy dispersion X-ray (EDX) spectroscopy and Fourier transform infrared spectroscopy (FTIR). For AC-DSD production, the raw powdered biomass of DSD impregnated (value = 2) with H3PO4 at room temperature and after shaking, was placed in a muffle furnace at 100°C for 12 h in glass tubes and subsequently carbonized at a high temperature of 400°C for 30 min. Batch reactor parameters for the ACDSD- RO16 system were optimized as a function of contact time, adsorbent dose, temperature, initial dye concentration and pH. For AC-DSD-TiO2 nanocomposite synthesis, AC-DSD and TiO2 paste was dried in the furnace at 90°C and calcined at 300°C and stored in a desiccator. Results: AC-DSD exhibited RO16 adsorption capacity of 92.84 mg/g. The experimental data were best described by Langmuir and Dubinin-Radushkevich isotherms with high R2 of 0.9995 and 0.9895 and closeness of predicted adsorption capacities of 94.15 and 88.58 mg/g respectively. This determines the chemisorption nature for RO16 adsorption onto AC-DSD. The experimental data was well explained by the pseudo-second order kinetic model. Thermodynamic parameters also suggest the endothermic, chemisorption and spontaneous adsorption reaction. Photocatalytic studies of novel AC-DSD-TiO2 revealed the higher Kc = 0.1833 value over Kad= 0.0572. Conclusion: Melia azedarach AC-DSD and its novel AC-DSD-TiO2 nanocomposite prove that these materials could provide an optimal solution for treating textile dye solutions effectively as the good adsorbent and photocatalyst.Keywords: Activated carbon, adsorption, isotherm and kinetics, Melia azedarach, nanocomposite, reactive orange 16, thermodynamics.
Graphical Abstract
[http://dx.doi.org/10.1016/j.jiec.2012.08.006]
[http://dx.doi.org/10.1016/j.surfin.2017.09.011]
[http://dx.doi.org/10.1177/0748233708095769] [PMID: 19028775]
[http://dx.doi.org/10.1016/j.ecoenv.2010.12.001] [PMID: 21176963]
[http://dx.doi.org/10.1016/j.cej.2019.05.203]
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.063]
[http://dx.doi.org/10.1016/j.watres.2007.01.023] [PMID: 17328938]
[http://dx.doi.org/10.1016/j.jclepro.2004.02.044]
[http://dx.doi.org/10.1016/j.molliq.2017.02.095]
[http://dx.doi.org/10.1016/j.biortech.2009.03.051] [PMID: 19375909]
[http://dx.doi.org/10.1016/j.chemosphere.2009.07.038] [PMID: 19683783]
[http://dx.doi.org/10.1016/j.ultsonch.2016.03.030] [PMID: 27150790]
[http://dx.doi.org/10.1016/j.memsci.2013.04.063]
[http://dx.doi.org/10.1021/acsami.7b14217] [PMID: 29111662]
[http://dx.doi.org/10.1016/j.apcatb.2017.11.058]
[http://dx.doi.org/10.1021/je100866c]
[PMID: 30377973]
[http://dx.doi.org/10.1002/pen.23695]
[http://dx.doi.org/10.2166/wst.2015.589] [PMID: 26942540]
[http://dx.doi.org/10.1016/j.desal.2010.10.047]
[http://dx.doi.org/10.1016/j.jenvman.2010.12.010] [PMID: 21195535]
[http://dx.doi.org/10.1016/j.arabjc.2014.01.020]
[http://dx.doi.org/10.1016/j.jhazmat.2008.01.040] [PMID: 18313842]
[http://dx.doi.org/10.1016/S1010-6030(02)00374-X]
[http://dx.doi.org/10.1016/j.matchemphys.2005.02.018]
[http://dx.doi.org/10.1016/S0926-3373(98)00051-4]
[http://dx.doi.org/10.1007/s11356-018-2958-2] [PMID: 30206830]
[http://dx.doi.org/10.1016/j.jhazmat.2008.05.039] [PMID: 18565650]
[http://dx.doi.org/10.1016/0008-6223(95)00067-N]
[http://dx.doi.org/10.1039/c3dt51807h] [PMID: 23999950]
[http://dx.doi.org/10.5772/35482]
[http://dx.doi.org/10.1002/9780470027318.a5606]
[http://dx.doi.org/10.1080/19443994.2016.1188730]
[http://dx.doi.org/10.1016/j.molliq.2017.08.093]
[http://dx.doi.org/10.37190/epe190301]
[http://dx.doi.org/10.1155/2016/4262578]
[http://dx.doi.org/10.1016/j.dyepig.2007.03.001]
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.015] [PMID: 20675047]
[http://dx.doi.org/10.1016/j.powtec.2017.12.034]
[http://dx.doi.org/10.1016/j.molliq.2019.04.081]
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.064] [PMID: 20541317]
[http://dx.doi.org/10.1016/j.jtice.2016.12.026]
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.061] [PMID: 29272803]
[http://dx.doi.org/10.1021/am504826q] [PMID: 25222124]
[http://dx.doi.org/10.1016/j.cej.2010.12.038]
[http://dx.doi.org/10.1007/s11356-016-8344-z] [PMID: 28064395]
[http://dx.doi.org/10.1080/01932691.2012.704749]
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.015] [PMID: 20570045]
[http://dx.doi.org/10.4236/jep.2011.26093]
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.034] [PMID: 17261347]
[http://dx.doi.org/10.1155/2017/3039817]
[http://dx.doi.org/10.1021/ja02242a004]
[http://dx.doi.org/10.1016/j.jhazmat.2007.06.122] [PMID: 17686578]
[http://dx.doi.org/10.1155/2011/714808]
[http://dx.doi.org/10.1016/S0032-9592(98)00112-5]
[http://dx.doi.org/10.1080/01496395.2014.969377]