Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihydroisoquinoline-2(1H)-yl)methyl) oxazol-5(4H)-one Derivatives Using 1,2,3,Tetrahydroisoquinoline and their Antimicrobial Activity

Author(s): Nalla Krishna Rao, Tentu Nageswara Rao, Botsa Parvatamma, Y. Prashanthi and Ravi Kumar Cheedarala*

Volume 17, Issue 5, 2020

Page: [396 - 403] Pages: 8

DOI: 10.2174/1570179417666200415151228

Price: $65

Abstract

Aims: A series of six 4-benzylidene-2-((1-phenyl-3,4-dihydro isoquinoline-2(1H)-yl)methyloxazol- 5(4H)-one derivatives were synthesized by condensation of substituted aryl aldehydes with 2-(2-(1-phenyl-3,4- dihydro isoquinoline-2(1H)-acetamido)acetic acid in the presence of sodium acetate, acetic anhydride and zinc oxide as catalysts.

Background: Novel Synthesis of 4-Benzylidene-2-((1-phenyl-3,4-dihy droisoquinoline-2(1H)-yl)methyl)oxazol- 5(4H)-one derivatives using 1,2,3,Tetrahydroisoquinoline and their antimicrobial activity.

Objective: The title compounds can be synthesized from 1,2,3,4-tetrahydroisoquinoline.

Methods: The target molecules, i.e., 4-benzylidene-2-((1-phenyl-3, 4-dihydro isoquinoline-2(1H)-yl) methyl) oxazol-5(4H)-one derivatives (8a-8f) have been synthesized from 1,2,3,4-tetrahydroisoquinoline which was prepared from benzoic acid in few steps.

Results: All the six compounds were evaluated based on advanced spectral data (1H NMR, 13C NMR & LCMS), and the chemical structures of all compounds were determined by elemental analysis.

Conclusion: Antibacterial activity of the derivatives was examined for the synthesized compounds and results indicate that compound with bromine substitution has a good activity profile.

Keywords: Condensation, oxazolone, isoquinoline, antibacterial activity, NMR, antimicrobial activity.

Graphical Abstract

[1]
Gilchrist, T.L. Heterocyclic Chemistry, 3rd ed; Addison Wesley: Essex, England, 1997.
[2]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[3]
Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Adv. Biol. Res. (Faisalabad), 2011, 5, 120-144.
[4]
Cheedrala, R.K.; Sachwani, R.; Palakodety, R.K. Lipase mediated kinetic resolution of benzimidazolyl ethanols. Tetrahedron Asymmetry, 2008, 19, 901-905.
[http://dx.doi.org/10.1016/j.tetasy.2008.03.021]
[5]
Cheedarala, R.K.; Sunkara, V. Joon Won Park. Facile Synthesis of Second-Generation Dendrons with an Orthogonal Functional Group at the Focal Point, 2009, 39, 1966-1980.
[6]
Dubey, P.K.; Cheedarala, R.K.; Balaji, B. Solid phase synthesis of benzimidazole ketones and benzimidazole chalcones under solvent-free conditions. Indian J. Chemistry B, 2003, 42B, 3128-3130.
[7]
Dubey, P.K.; Naidu, A.; Cheedarala, R.K. Studies on syntheses of 1-alkyl-2-substitutedthiazolylbenzimidazoles. Indian J. Chemistry B, 2003, 42B, 931-934.
[8]
Ramaiah, K.; Dubey, P.K.; Ramanatham, J.; Cheedarala, R.K.; Grossert, J.S. Benzimidazolium dichromates: Efficient reagents for selective oxidation of alcohols to carbonyl compounds. Indian J. Chemistry B, 2003, 42B, 1765-1767.
[http://dx.doi.org/10.1002/chin.200344047]
[9]
Dubey, P.K.; Cheedarala, R.K.; Prasada, R.P.V.V. Syntheses of 1-alkyl -2-(substituted-2-pyridyl)benzimidazoles. Indian J. Chemistry B, 2003, 42B, 2115-2118.
[10]
Dubey, P.K.; Naidu, A.; Cheedarala, R.K.; Prasada, R.P.V.V. Preparation of 4-(1-alkyl-benzo[d]imidazole-2-yl)-2-phenyl-2,3 dihydrobenzo(b) [1,4] thiazepines. Indian J. Chemistry B, 2003, 42B, 1701-1705.
[http://dx.doi.org/10.1002/chin.200344161]
[11]
Dubey, P.K.; Kumar, R.; Cheedarala, R.K.; Hooper, D.L. Condensation of o-phenylene diamine with cinnamic acids. Synth. Commun., 2001, 31, 3439-3446.
[http://dx.doi.org/10.1081/SCC-100106202]
[12]
Park, S.J.; Cheedrala, R.K.; Diallo, M.S.; Kim, C.; Kim, I.S.; Goddard, W.A. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. J. Nanopart. Res., 2012, 14, 884-887.
[http://dx.doi.org/10.1007/s11051-012-0884-7]
[13]
Kwon, M.S.; Kim, N.; Seo, S.H.; Park, I.S.; Cheedrala, R.K.; Park, J. Recyclable palladium catalyst for highly selective α alkylation of ketones with alcohols. Angew. Chem. Int. Ed. Engl., 2005, 44(42), 6913-6915.
[http://dx.doi.org/10.1002/anie.200502422] [PMID: 16206316]
[14]
Kwon, M. S.; Bosco, W. J.; Cheedarala, R. K. Park* One-pot Synthesis of Imines and Secondary Amines by Pd-catalyzed Coupling of primary Benzyl Alcohols and Primary Amines, ChemInform 2009, 40, 071.
[15]
Jeon, J.H.; Cheedarala, R.K.; Kee, C.D.; Oh, I.K. Dry‐type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater., 2013, 23, 6007-6018.
[http://dx.doi.org/10.1002/adfm.201203550]
[16]
Cheedarala, R.K.; Jeon, J.H.; Kee, C.D.; Oh, I.K. Bio‐Inspired All‐Organic Soft Actuator Based on a π–π Stacked 3D Ionic Network Membrane and Ultra‐Fast Solution Processing. Adv. Funct. Mater., 2014, 24, 6005-6015.
[http://dx.doi.org/10.1002/adfm.201401136]
[17]
Cheedarala, R.K.; Kim, G.H.; Cho, S.; Lee, J.; Kim, J.; Song, H.K.; Kim, J.Y.; Yang, C. Ladder-type heteroacene polymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. J. Mater. Chem., 2011, 21, 843-850.
[http://dx.doi.org/10.1039/C0JM01897J]
[18]
Cheedarala, R.K. Experimental study on critical heat flux of highly efficient soft hydrophilic CuO-Chitosan nano fluid templates. Int. J. Heat Mass Transf., 2016, 100, 396-406.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.096]
[19]
Woo, S.; Lee, Y.; Sunkara, V.; Cheedarala, R.K.; Shin, H.S.; Choi, H.C.; Park, J.W. “Fingertip”-guided noncovalent functionalization of carbon nanotubes by dendrons. Langmuir, 2007, 23(23), 11373-11376.
[http://dx.doi.org/10.1021/la701968y] [PMID: 17918872]
[20]
Cheedarala, R.K.; Park, E.J.; Park, Y.B.; Park, H.W. Highly Wettable CuO:Graphene Oxide Core-Shell Porous Nanocomposites for Enhanced Critical Heat Flux. Physica Satus Solidi (A), 2015, 212, 1756-1766.
[http://dx.doi.org/10.1002/pssa.201431858]
[21]
Nahian, R.K. Cheedarala, K. K. Ahn, A Study of Sustainable Green Current Generated by the Fluid-Based Triboelectric Nanogenerator (Flu-TENG) with a Comparison of Contact and Sliding Mode. Nano Energy, 2017, 38, 447-456.
[http://dx.doi.org/10.1016/j.nanoen.2017.06.012]
[22]
Cheedarala, R.K.; Parvez, A.N.; Ahn, K.K. Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy, 2018, 53, 362-372.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.066]
[23]
Kong, K.; Cheedarala, R.K.; Kim, M.; Roh, H.D.; Park, Y.B.; Park, H.W. Electrical thermal heating and piezoresistive characteristics of hybrid CuO–woven carbon fiber/vinyl ester composite laminates. Compos., Part A Appl. Sci. Manuf., 2016, 85, 103-112.
[http://dx.doi.org/10.1016/j.compositesa.2016.03.015]
[24]
Cheedarala, R.K.; Duy, K.K. Ahn, Double characteristic BNO-SPI-TENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy, 2018, 44, 430-437.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.019]
[25]
Cheedarala, R.K.; Shahriar, M.; Ahn, J.H.; Hwang, J.Y.; Ahn, K.K. Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 2019, 65 104017
[http://dx.doi.org/10.1016/j.nanoen.2019.104017]
[26]
Dubey, P. K.; Cheedarala, R. K. Solid-Phase Synthesis of Benzimidazole Ketones and Benzimidazole Chalcones under Solvent-Free Conditions, Chem Inform, Wiley-CVH Verlag, 2003, 200, 092.
[27]
Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K. Recyclable Palladium Catalyst for a Highly Selective α-Alkylation of Ketones with Alcohols, ChemInform, 2006, 350, 07-092.
[28]
Katrizky, A.R.; Rees, C.W. Comprehensive heterocyclic chemistry; Pergamon Press: New York, 1984, pp. 1-8.
[29]
Siyang, X.; Jing, R.; Kui, W.; Hong, C.; Han, Y.; Wenrui, L. Diastereoselective Synthesis of Substituted Tetrahydroisoquinolines and Isoindolines via a Silver(I) Triflate-Promoted Tandem Reaction. Adv. Synth. Catal., 2016, 358, 532-538.
[http://dx.doi.org/10.1002/adsc.201500903]
[30]
Yury, V.S. Synthesis of alkaloids of isoquinoline class chemistry and Computational Simulation. Butlerov Communications, 2002, 2, 21-34.
[31]
Faty, R.M.; Rashed, M.S.; Youssef, M.M. Microwave-assisted synthesis and antimicrobial evaluation of novel spiroisoquinoline and spiropyrido[4,3-d]pyrimidine derivatives. Molecules, 2015, 20(2), 1842-1859.
[http://dx.doi.org/10.3390/molecules20021842] [PMID: 25625680]
[32]
Zhang, L.; Song, Y.; Huang, J.; Liu, J.; Zhu, W.; Zhou, Y.; Lv, J.; Zheng, C.; Zhu, J. Design, Synthesis and Biological Evaluation of 1,4-Disubstituted-3,4-dihydroisoquinoline Compounds as New Tubulin Polymerization Inhibitors. Int. J. Mol. Sci., 2015, 16(5), 10173-10184.
[http://dx.doi.org/10.3390/ijms160510173] [PMID: 25950763]
[33]
Song, D.W.; Xin, N.; Xie, B.J.; Li, Y.J.; Meng, L.Y.; Li, H.M.; Schläppi, M.; Deng, Y.L. Formation of a salsolinol-like compound, the neurotoxin, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, in a cellular model of hyperglycemia and a rat model of diabetes. Int. J. Mol. Med., 2014, 33(3), 736-742.
[http://dx.doi.org/10.3892/ijmm.2013.1604] [PMID: 24366308]
[34]
Mihoubi, M.; Micale, N.; Scala, A.; Jarraya, R.M.; Bouaziz, A.; Schirmeister, T.; Risitano, F.; Piperno, A.; Grassi, G. Synthesis of C3/C1-Substituted Tetrahydroisoquinolines. Molecules, 2015, 20(8), 14902-14914.
[http://dx.doi.org/10.3390/molecules200814902] [PMID: 26287146]
[35]
Jiang, H.; Yang, J.; Tang, X.; Wu, W. Divergent Syntheses of Isoquinolines and Indolo[1,2-a]quinazolines by Copper-Catalyzed Cascade Annulation from 2-Haloaryloxime Acetates with Active Methylene Compounds and Indoles. J. Org. Chem., 2016, 81(5), 2053-2061.
[http://dx.doi.org/10.1021/acs.joc.5b02914] [PMID: 26828307]
[36]
Xie, L.G.; Niyomchon, S.; Mota, A.J.; González, L.; Maulide, N. Metal-free intermolecular formal cycloadditions enable an orthogonal access to nitrogen heterocycles. Nat. Commun., 2016, 7(7), 10914.
[http://dx.doi.org/10.1038/ncomms10914] [PMID: 26975182]
[37]
Bala, S.; Saini, M.; Kamboj, S. Methods for synthesis of Oxazolones: A Review. Int. J. Che. Tech. Res, 2011, 3, 1102-1118.
[38]
Fareed, G.; Afza, N.; Versiani, A.M.; Fareed, N.; Mughal, R.U.; Kalhoro, A.M.; Lateef, M. Synthesis, spectroscopic characterization and pharmacological evaluation of oxazolone derivatives. J. Serb. Chem. Soc., 2013, 78, 1127-1134.
[http://dx.doi.org/10.2298/JSC120917126F]
[39]
Das, S.K.; Hader, P.K.; Kar, P.K.; Marriapan, G. Evaluation of antihyper glycemic and antihyperlipidemic activity of some oxazolone derivatives: A review. Journal of Advances in Pharmacy and Healthcare Research, 2011, 1, 2231-6817.
[40]
Mariappan, G.; Saha, B.P.; Datta, S.; Kumar, D.; Haldar, P.K. Design, synthesis and anti-diabetic evaluation of oxazolone derivatives: A review. J. Chem. Sci., 2011, 123, 335-341.
[http://dx.doi.org/10.1007/s12039-011-0079-2]
[41]
Shanawaz, M.; Naqvi, A.; Rao, A.V.; Seth, D.S. Design and synthesis of substituted oxazolones and their anti-bacterial activity: A review. 13rd international Electronic conference on Synthetic Organic Chemistry (ECSOC-13) 2009, pp. 1-30.
[42]
Fozooni, S.; Tikdari, A.M.; Hamidian, H.; Khabazzadeha, H. Synthesis of some dyes and an evaluation of their solvatochromic behavior. ARKIVOC, 2008, 14, 115-123.
[43]
Pandey, L.; Karki, R.; Theengh, A.; Mariappan, J. B. G. Microwave-assisted synthesis of some novel oxazolone derivatives as oral hypoglycemic agents, 2013, 2, 061-067.
[44]
Benedetti-Doctorovich, V.; Burgess, E.M.; Lambropoulos, J.; Lednicer, D.; Van Derveer, D.; Zalkow, L.H. Synthesis of 2-methyl-(Z)-4-(phenylimino)naphth[2,3-d]oxazol-9-one, a monoimine quinone with selective cytotoxicity toward cancer cells. J. Med. Chem., 1994, 37(5), 710-712.
[http://dx.doi.org/10.1021/jm00031a023] [PMID: 8126711]
[45]
Shahnawaaz, M.; Naqvi, A.; Rao, A.V.; Seth, D.S. Seth Design and synthesis of substituted oxazolones and their antibacterial activity, 13rd International Electronic Conference on Synthetic Organic Chemistry (ECSOC-13), http://www.mdpi.org/ecsoc-13/ http://www.usc.es/congresos/ecsoc/13/2009, 1-30.
[46]
Taile, V.; Hatzade, K.; Gaidhane, P.; Ingle, V. Synthesis and biological activity of 4-(4-hydroxybenzylidene)-2-(substituted styryl) oxazol-5-ones and their o-glucosides. Turk. J. Chem., 2009, 33, 295-305.
[47]
Doshi, J.M.; Tian, D.; Xing, C. Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. J. Med. Chem., 2006, 49(26), 7731-7739.
[http://dx.doi.org/10.1021/jm060968r] [PMID: 17181155]
[48]
Hayashi, S.; Ueno, N.; Murase, A.; Takada, J. Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs. J. Enzyme Inhib. Med. Chem., 2014, 29(6), 846-867.
[http://dx.doi.org/10.3109/14756366.2013.864650] [PMID: 24517373]
[49]
Rao, T.N.; Cheedarala, R.K. Determination of dithiocarbamate mancozeb residues in milk samples using GC-MS method. Anal. Chem. Lett., 2019, 9(6), 845-852.
[http://dx.doi.org/10.1080/22297928.2019.1710563]
[50]
Cheedarala, R.K.; Song, J.I. Sand-polished Kapton film and aluminum as source of electron transfer triboelectric nanogenerator through vertical contact separation mode. Int. J. Smart Nano Mater., 2020, 11(1), 38-46.
[http://dx.doi.org/10.1080/19475411.2020.1727991]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy