Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Eco-friendly and Enantiospecific Biginelli Synthesis Using (+)-Myrtenal as the Substrate – An Impeccable and Unequivocal Analysis of the Product

Author(s): Luiza Albino Dias Benincá, Carolina Bastos Pereira Ligiéro, Jonas da Silva Santos, Joel Jones Junior* and Flavia Martins da Silva

Volume 17, Issue 5, 2020

Page: [389 - 395] Pages: 7

DOI: 10.2174/1570179417666200506103137

Price: $65

Abstract

Background: We found in the literature, an excellent review of the Biginelli reaction that addresses the methodologies for obtaining enantiopure dihydropyrimidinones (DHPMs). In 1992, optically pure DHPMs were obtained by fractional crystallization of the diastereomeric ammonium salt derivative with (S)-(-) and (R)- (+)-α-methyl benzylamine and by other chiral resolution techniques, such as chiral high-performance liquid chromatography (HPLC). Asymmetric syntheses of these compounds are also explained in the literature. The main strategy is to use acid catalysts such as organophosphates, organometallic complexes, amines and diamines, nanocomposites, and chiral ionic liquids, e.g., L-prolinium sulfate (Pro2SO4).

Objective: The objective was to study the Biginelli reaction with a chiral aldehyde.

Methods: A mixture of ethyl acetoacetate (0.26 g, 3 mmol), urea (0.18 g, 3 mmol) and ethyl lactate (EL) (1 mL) was left under heating at 70°C and stirring for 1 h. Next, (-)-(1R)-myrtenal (0.45 g, 3 mmol) was added, and the medium was heated for 5 h more until the formation of a white solid. Ten millilitres of distilled water was added, and the product was extracted with CH2Cl2 (3 x 4 mL). The solvent was evaporated, and the product was recrystallized from ethanol-water.

Results and Discussion: (+)-Myrtenal was used as a chiral substrate for a study that led to ethyl (R)-4-((1R,5S)- 6,6-dimethylbicyclo [3.1.1]hept-2-en-2-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate by the Biginelli synthesis using EL as a green solvent. The result is the first example of the enantiospecific Biginelli reaction. The product was exhaustively characterized by several physical analysis methods, i.e., 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopies, infrared (IR) spectroscopy, mass spectrometry (MS), and high-resolution MS (HRMS), and its structure was unequivocally elucidated by X-ray crystallography.

Conclusion: Compound (4R)-4-(6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-6-methyl-2-oxo-1,2,3,4- tetrahydropyrimidine- 5-ethyl carboxylate is the first example of the enantiospecific Biginelli reaction. In addition, the process has the advantage of using EL as a green solvent. The product was characterized by 1H, 13C, and 2D NMR and IR spectroscopy, MS, HRMS, and X-ray crystallography.

Keywords: Biginelli, green chemistry, green solvent, ecofriendly, myrtenal, enantiospecific.

Graphical Abstract

[1]
Biginelli, P. Ueber Aldehyduramide des Acetessigäthers. Ber. Dtsch. Chem. Ges., 1891, 24(1), 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
[2]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorth, J.N. Biginelli Reaction: an overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[3]
Kappe, C.O.; Uray, G.; Roschger, P.; Lindner, W.; Kratky, C.; Keller, W. Synthesis and Reactions of Biginelli Compounds -5. Facile Preparation and Resolution of a Stable 5-Dihydropyrimidinecarboxylic Acid. Tetrahedron, 1992, 48(26), 5473-5480.
[http://dx.doi.org/10.1016/S0040-4020(01)88301-0]
[4]
Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J.M.J. A combinatorial approach to recognition of chirality: preparation of highly enantioselective aryl-dihydropyrimidine selectors for chiral HPLC. J. Comb. Chem., 1999, 1(1), 105-112.
[http://dx.doi.org/10.1021/cc980014p] [PMID: 10746018]
[5]
Kleidemigg, O.P.; Kappe, C.O. Separation of enantiomers of 4-aryldihydropyrimidines by direct enantioselective HPLC. A critical comparison of chiral stationary phases. Tetrahedron Asymmetry, 1997, 8(12), 2057-2067.
[http://dx.doi.org/10.1016/S0957-4166(97)00214-0]
[6]
Lewandowski, K.; Murer, P.; Svec, F.; Fréchet, J.M.J. Highly selective chiral recognition on polymer supports: preparation of a combinatorial library of dihydropyrimidines and its screening for novel chiral HPLC ligands. Chem. Commun. (Camb.), 1998, 2237-2238
[http://dx.doi.org/10.1039/a806395h]
[7]
Singh, K.; Singh, S. Chemical resolution of inherently racemic dihydropyrimidinones via a site selective functionalization of Biginelli compounds with chiral electrophiles: a case study. Tetrahedron, 2009, 65(21), 4106-4112.
[http://dx.doi.org/10.1016/j.tet.2009.03.060]
[8]
Singh, K.; Arora, D.; Falkowski, D.; Liu, Q.; Moreland, R.S. An efficacious protocol for C-4 substituted 3,4-dihydropyrimidinones. Synthesis and calcium channel binding studies. Eur. J. Org. Chem., 2009, 2009(19), 3258-3264.
[http://dx.doi.org/10.1002/ejoc.200900208] [PMID: 24273442]
[9]
Alvim, H.G.O.; Pinheiro, D.L.J.; Carvalho-Silva, V.H.; Fioramonte, M.; Gozzo, F.C.; da Silva, W.A.; Amarante, G.W.; Neto, B.A.D. Combined Role of the Asymmetric Counteranion-Directed Catalysis (ACDC) and Ionic Liquid Effect for the Enantioselective Biginelli Multicomponent Reaction. J. Org. Chem., 2018, 83(19), 12143-12153.
[http://dx.doi.org/10.1021/acs.joc.8b02101] [PMID: 30160956]
[10]
Guo, Y.; Gao, Z.; Fan, C.; Chen, J.; Li, J.; Huang, Y.; Huang, G.; Yu, H.; Zou, C. Enantioselective Biginelli Reaction of Aliphatic Aldehydes Catalyzed by a Chiral Phosphoric Acid: A Key Step in the Synthesis of the Bicyclic Guanidine Core of Crambescin A and Batzelladine A. Synthesis, 2018, 50(12), 2394-2406.
[http://dx.doi.org/10.1055/s-0036-1591567]
[11]
Guo, Y.; Gao, Z.; Meng, X.; Huang, G.; Zhong, H.; Yu, H.; Ding, X.; Tang, H.; Zou, C. Highly Enantioselective Biginelli Reaction of Aliphatic Aldehydes Catalyzed by Chiral Phosphoric Acids Synlett., 2017, 28(15) A-E.
[12]
Hu, X.; Zhang, R.; Xie, J.; Zhou, Z.; Shan, Z. Synthesis of a novel sterically hindered chiral cyclic phosphoric acid derived from L-tartaric acid and application to the asymmetric catalytic Biginelli reaction. Tetrahedron Asymmetry, 2017, 28(1), 69-74.
[http://dx.doi.org/10.1016/j.tetasy.2016.11.014]
[13]
Bhadury, P.S.; Sun, Z. Axially Chiral Brønsted Acid Catalyzed Transformations of Electrophilic Imines. Curr. Org. Chem., 2014, 18(1), 127-150.
[http://dx.doi.org/10.2174/138527281801140121154544]
[14]
An, D.; Fan, Y-S.; Gao, Y.; Zhu, Z-Q.; Zheng, L-Y.; Zhang, S-Q. Highly Enantioselective Biginelli Reaction Catalyzed by Double Axially Chiral Bisphosphorylimides. Eur. J. Org. Chem., 2014, 2014(2), 301-306.
[http://dx.doi.org/10.1002/ejoc.201301560]
[15]
Xu, F.; Huang, D.; Lin, X.; Wang, Y. Highly enantioselective Biginelli reaction catalyzed by SPINOL-phosphoric acids. Org. Biomol. Chem., 2012, 10(22), 4467-4470.
[http://dx.doi.org/10.1039/c2ob25663k] [PMID: 22565820]
[16]
Goss, J.M.; Schaus, S.E. Enantioselective synthesis of SNAP-7941: chiral dihydropyrimidone inhibitor of MCH1-R. J. Org. Chem., 2008, 73(19), 7651-7656.
[http://dx.doi.org/10.1021/jo801463j] [PMID: 18767801]
[17]
Chen, X-H.; Xu, X-Y.; Liu, H.; Cun, L-F.; Gong, L-Z. Highly enantioselective organocatalytic Biginelli reaction. J. Am. Chem. Soc., 2006, 128(46), 14802-14803.
[http://dx.doi.org/10.1021/ja065267y] [PMID: 17105279]
[18]
Li, N.; Chen, X-H.; Song, J.; Luo, S-W.; Fan, W.; Gong, L-Z. Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3′-disubstituents of phosphoric acids. J. Am. Chem. Soc., 2009, 131(42), 15301-15310.
[http://dx.doi.org/10.1021/ja905320q] [PMID: 19785440]
[19]
Yu, J.; Shi, F.; Gong, L-Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44(11), 1156-1171.
[http://dx.doi.org/10.1021/ar2000343] [PMID: 21800828]
[20]
Wan, J-P.; Lina, Y.; Liua, Y. Catalytic Asymmetric Biginelli Reaction for the Enantioselective Synthesis of 3,4-Dihydropyrimidinones (DHPMs). Curr. Org. Chem., 2014, 18(6), 687-699.
[http://dx.doi.org/10.2174/138527281806140415235855]
[21]
Huang, Y.; Yang, F.; Zhu, C. Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J. Am. Chem. Soc., 2005, 127(47), 16386-16387.
[http://dx.doi.org/10.1021/ja056092f] [PMID: 16305212]
[22]
Muñoz-Muñiz, O.; Juaristi, E. An enantioselective approach to the Biginelli dihydropyrimidinone condensation reaction using CeCl3 and InCl3 in the presence of chiral ligands. ARKIVOC, 2003, (xi), 16-26.
[23]
Cai, Y-F.H-M.; Li, L.; Jiang, K-Z.; Lai, G-Q.; Jiang, J-X.; Xu, L-W. Cooperative and Enantioselective NbCl5/Primary Amine Catalyzed Biginelli Reaction. Eur. J. Org. Chem., 2010, 2010(26), 4986-4990.
[http://dx.doi.org/10.1002/ejoc.201000894]
[24]
Fedorova, O.V.; Titova, Y.A.; Ovchinnikova, I.G.; Rusinova, G.L.; Charushina, V.N. 4-Hydroxyproline containing podands as new chiral catalysts for the asymmetric Biginelli reaction. Mendeleev Commun., 2018, 28(4), 357-358.
[http://dx.doi.org/10.1016/j.mencom.2018.07.004]
[25]
Yu, H.; Dai, G.; He, Q-R.; Tang, J-J. Enantioselective synthesis and evaluation of 4-styryldihydropyrimidin-2-thiones as anti-proliferative agents. Med. Chem. Res., 2017, 26(4), 787-795.
[http://dx.doi.org/10.1007/s00044-017-1790-4]
[26]
Yu, H.; Xu, P.; He, H.; Zhu, J.; Lin, H.; Han, S. Highly enantioselective Biginelli reactions using methanopyroline/thiourea – based dual organocatalyst systems: asymmetric synthesis of 4-substituted unsaturated aryl dihydropyrimidines. Tetrahedron Asymmetry, 2017, 28(2), 257-265.
[http://dx.doi.org/10.1016/j.tetasy.2016.11.015]
[27]
Hang, Z.; Zhu, J.; Lian, X.; Xu, P.; Yu, H.; Han, S. A highly enantioselective Biginelli reaction using self-assembled methanoproline-thiourea organocatalysts: asymmetric synthesis of 6-isopropyl-3,4-dihydropyrimidines. Chem. Commun. (Camb.), 2016, 52(1), 80-83.
[http://dx.doi.org/10.1039/C5CC07880F] [PMID: 26498376]
[28]
Barrulas, P.; Benaglia, M.; Burke, A.J. Synthesis of novel cinchona-amino acid hybrid organocatalysts for asymmetric catalysis. Tetrahedron Asymmetry, 2014, 25(12), 923-935.
[http://dx.doi.org/10.1016/j.tetasy.2014.05.003]
[29]
Xu, D-Z.; Li, H.; Wang, Y. Highly enantioselective Biginelli reaction catalyzed by a simple chiral primary amine catalyst: asymmetric synthesis of dihydropyrimidines. Tetrahedron, 2012, 68(38), 7867-7872.
[http://dx.doi.org/10.1016/j.tet.2012.07.027]
[30]
Wang, Y.; Yu, J.; Miao, Z.; Chen, R. Bifunctional primary amine-thiourea-TfOH (BPAT·TfOH) as a chiral phase-transfer catalyst: the asymmetric synthesis of dihydropyrimidines. Org. Biomol. Chem., 2011, 9(8), 3050-3054.
[http://dx.doi.org/10.1039/c0ob01268h] [PMID: 21394354]
[31]
Saha, S.; Moorthy, J.N. Enantioselective organocatalytic Biginelli reaction: dependence of the catalyst on sterics, hydrogen bonding, and reinforced chirality. J. Org. Chem., 2011, 76(2), 396-402.
[http://dx.doi.org/10.1021/jo101717m] [PMID: 21192642]
[32]
Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. An enantioselective biginelli reaction catalyzed by a simple chiral secondary amine and achiral brønsted acid by a dual-activation route. Chemistry, 2008, 14(10), 3177-3181.
[http://dx.doi.org/10.1002/chem.200701581] [PMID: 18246559]
[33]
González-Olvera, R.; Demare, P.; Regla, I.; Juaristi, E. Application of (1S,4S)-2,5-diazabicyclo[2.2.1]heptane derivatives in asymmetric organocatalysis: the Biginelli reaction. ARKIVOC, 2008, (vi), 61-72.
[34]
Ding, D.; Zhao, C-G. Primary Amine-Catalyzed Biginelli Reaction for the Enantioselective Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones. Eur. J. Org. Chem., 2010, 2010(20), 3802-3805.
[http://dx.doi.org/10.1002/ejoc.201000448] [PMID: 21188287]
[35]
Wang, Y.; Yang, H.; Yu, J.; Miao, Z.; Chen, R. Highly Enantioselective Biginelli Reaction Promoted by Chiral Bifunctional Primary Amine-Thiourea Catalysts: Asymmetric Synthesis of Dihydropyrimidines. Adv. Synth. Catal., 2009, 351(18), 3057-3062.
[http://dx.doi.org/10.1002/adsc.200900597]
[36]
Wu, Y-Y.; Chai, Z.; Liu, X-Y.; Zhao, G.; Wang, S-W.S-W. Synthesis of Substituted 5-(Pyrrolidin-2-yl)tetrazoles and Their Application in the Asymmetric Biginelli Reaction. Eur. J. Org. Chem., 2009, 2009(6), 904-911.
[http://dx.doi.org/10.1002/ejoc.200801046]
[37]
Deepa; Yadav, G.D.; Aalam, M.J.; Chaudhary, P.; Singh, S. Synthesis of Dihydropyrimidinones (DHPMs) and Hexahydro Xanthene Catalyzed by 1,4-Diazabicyclo [2.2.2] Octane Triflate Under Solvent-Free Condition. Curr. Org. Synth., 2019, 16(5), 776-786.
[http://dx.doi.org/10.2174/1570179415666181113154232] [PMID: 31984893]
[38]
Titova, Y.A.; Gruzdev, D.A.; Fedorova, O.V.; Alisienok, O.A.; Murashkevich, A.N.; Krasnov, V.P.; Rusinov, G.L.; Charushin, V.N. New chiral proline-based catalysts for silicon and zirconium oxides-promoted asymmetric Biginelli reaction. Chem. Heterocycl. Compd., 2018, 54(4), 417-427.
[http://dx.doi.org/10.1007/s10593-018-2285-z]
[39]
Fedorova, O.V.; Titova, Y.A.; Vigorov, A.Y.; Toporova, M.S.; Alisienok, O.A.; Murashkevich, A.N.; Krasnov, V.P.; Rusinov, G.L.; Charushin, V.N. Asymmetric Biginelli Reaction Catalyzed by Silicon, Titanium and Aluminum Oxides. Catal. Lett., 2016, 146(2), 493-498.
[http://dx.doi.org/10.1007/s10562-015-1666-5]
[40]
Fedorova, O.V.; Valova, M.S.; Titova, Y.A.; Ovchinnikova, I.G.; Grishakov, A.N. Uimin, Mysik, A.A.; Ermakov, A.E.; Rusinov, G.L.; Charushin, V.N. Catalytic Effect of Nanosized Metal Oxides in the Biginelli Reaction. Kinet. Catal., 2011, 52(2), 226-233.
[http://dx.doi.org/10.1134/S0023158411020066]
[41]
Titova, Y.; Fedorova, O.; Rusinova, G.; Vigorova, A.; Krasnova, V.; Murashkevich, A.; Charushin, V. Effect of nanosized TiO2–SiO2covalently modified by chiral moleculeson the asymmetric Biginelli reaction Catal. Today 2015, 241(Part B), 270-274.
[42]
Uhm, Y.R.; Lee, H.M.; Fedorova, O.; Ovchinnikova, I.; Valova, M.; Rusinov, G.; Charushin, V.; Rhee, C.K. Synthesis of carbon encapsulated metal (Ni and Cu) nano particles and applications for chiral catalysts. Res. Chem. Intermed., 2010, 36(6-7), 867-873.
[http://dx.doi.org/10.1007/s11164-010-0194-6]
[43]
Yadav, L.D.S.Y.; Rai, A.; Rai, V.K.R.; Awasthi, C. Chiral ionic liquid catalyzed Biginelli reaction: stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron, 2008, 64(7), 1420-1429.
[http://dx.doi.org/10.1016/j.tet.2007.11.044]
[44]
da Silva, F.M.; Gomes, A.K.; Jones, J., Jr Organic reaction in water. Part 2: Michael addition in water without phase transfer agents. Can. J. Chem., 1999, 77(5-6), 624-627.
[http://dx.doi.org/10.1139/cjc-77-5-6-624]
[45]
da Silva, F.M.; Jones, J. Jr Organic Reaction in Water. Part 3: Diastereoselectivity in Michael Additions of Thiophenol to Nitro Olefins in Aqueous Media. J. Braz. Chem. Soc., 2001, 12(2), 135-137.
[http://dx.doi.org/10.1590/S0103-50532001000200002]
[46]
Almeida, R.; Pereira, M.L.O.; Coelho, R.B.; de Carvalho, E.M.; Kaiser, C.R.; Jones, J., Jr; da Silva, F.M. Michael Additions of Thiocompounds to α,β-Unsaturated Carbonyl Compounds in Aqueous Media: Stereoselectivity with Unambiguous Characterization by NMR. J. Braz. Chem. Soc., 2008, 19(5), 894-902.
[http://dx.doi.org/10.1590/S0103-50532008000500013]
[47]
da Silva, F.M.; Gonçalves, M.; Ferre, F.T.; Sena, J.D.; Coelho, R.B.; Jones, J., Jr 4-Phenyl-1,4-Dihydropyridines by aqueous Hantzsch Reactions. Heterocycl. Commun., 2009, 15(1), 57-59.
[http://dx.doi.org/10.1515/HC.2009.15.1.57]
[48]
Muñoza, J.A.H.; dos Santos, B.D.C.F.; Soares, R.F.; de Carvalho, E.M.; Jones, J., Jr; da Silva, F.M. The Synthesis of Imidazoles via the Radziszewski Reaction in Aqueous Media. Heterocycl. Lett., 2011, 1(4), 365-371.
[49]
Forero, J.S.B.; de Carvalho, E.M.; Jones, J., Jr; da Silva, F.M. A New Protocol for the Synthesis of 2-Aminothiophenes through the Gewald Reaction in Solvent-free Conditions. Heterocycl. Lett., 2011, 1(1), 61-67.
[50]
dos Santos, B.D.C.F.; Forero, J.S.B.; de Carvalho, E.M.; Jones, J., Jr; da Silva, F.M. A Solventless Synthesis of 2-Aminothiophenes via the Gewald Reaction under Ultrasonic Conditions. Heterocycl. Lett., 2012, 2(1), 31-36.
[51]
de Azevedo, P.N.; Behenck, L.S.; Forero, J.S.B.; Muñoz, J.A.H.; de Cavalho, E.M.; Jones, J., Jr; da Silva, F.M. A Sustainable Approach to Bis-lndole Synthesis Using Propylene Carbonate as an Eco-Friendly Solvent. Curr. Org. Chem., 2014, 11(4), 605-611.
[52]
Muñoz, J.A.H.; de Cavalho, E.M.; Jones, J., Jr; da Silva, F.M. Propylene Carbonate as a Solvent in the Eco-Friendly Synthesis of Highly Substituted Imidazoles Through the Radziszewski Reaction. Curr. Org. Chem., 2014, 13(4), 432-439.
[53]
Forero, J.S.B.; de Cavalho, E.M.; Jones, J., Jr; da Silva, F.M. Facile, Efficient Diastereoselective Synthesis of Tetrahydroquinoline Scaffolds Using Propylene Carbonate as an Eco-Friendly Solvent. Curr. Org. Chem., 2015, 12(1), 102-107.
[54]
Cervasio, R.J.; Forero, J.S.B.; Muñoz, J.A.H.; Jones, J., Jr; da Silva, F.M. Biginelli Reaction using Propylene Carbonate as Green Solvent: An Elegant Methodology for the Synthesis of Dihydropyrimidinones and Dihydropyrimidinthiones. Curr. Org. Chem., 2017, 14(5), 715-720.
[55]
Delgado, P.; Sanz, M.T.; Beltrán, S.; Núñez, L.A. Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chem. Eng. J., 2010, 165(2), 693-700.
[http://dx.doi.org/10.1016/j.cej.2010.10.009]
[56]
Pereira, C.S.M.; Silva, V.M.T.M.; Rodrigues, A.E. Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chem., 2011, 13(10), 2658-2671.
[http://dx.doi.org/10.1039/c1gc15523g]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy