[1]
Russo, A.; Borrelli, F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine, 2005, 12(4), 305-317. [http://dx.doi. org/10.1016/j.phymed.2003.12.008]. [PMID: 15898709].
[2]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326. [http://dx.doi.org/10.1089/rej.2013.1431]. [PMID: 23772955].
[3]
Al-Snafi, A.E. The pharmacology of Bacopa monniera. A review. Int. J. Pharm. Sci. Res, 2013, 4 (12), 0975-9492
[4]
Kamkaew, N.; Scholfield, C.N.; Ingkaninan, K.; Maneesai, P.; Parkington, H.C.; Tare, M.; Chootip, K. Bacopa monnieri and its constituents is hypotensive in anaesthetized rats and vasodilator in various artery types. J. Ethnopharmacol., 2011, 137(1), 790-795. [http://dx.doi.org/10.1016/j.jep.2011.06.045]. [PMID: 21762768].
[5]
Shahid, M.; Subhan, F.; Ullah, I.; Ali, G.; Alam, J.; Shah, R. Beneficial effects of Bacopa monnieri extract on opioid induced toxicity. Heliyon, 2016, 2(2), e00068. [http://dx.doi.org/10.1016/ j.heliyon.2016.e00068]. [PMID: 27441247].
[6]
Janani, P.; Sivakumari, K.; Parthasarathy, C. Hepatoprotective activity of bacoside A against N-nitrosodiethylamine-induced liver toxicity in adult rats. Cell Biol. Toxicol., 2009, 25(5), 425-434. [http://dx.doi.org/10.1007/s10565-008-9096-4]. [PMID: 18679812].
[7]
Janani, P.; Sivakumari, K.; Geetha, A.; Ravisankar, B.; Parthasarathy, C. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. J. Cancer Res. Clin. Oncol., 2010, 136(5), 759-770. [http://dx.doi.org/ 10.1007/s00432-009-0715-0]. [PMID: 19916024].
[8]
Anand, T.; Phani, K.G.; Pandareesh, M.D.; Swamy, M.S.; Khanum, F.; Bawa, A.S. Effect of bacoside extract from Bacopa monniera on physical fatigue induced by forced swimming. Phytother. Res., 2012, 26(4), 587.
[9]
Sharath, R.; Harish, B.G.; Krishna, V.; Sathyanarayana, B.N.; Swamy, H.M. Wound healing and protease inhibition activity of Bacoside-A, isolated from Bacopa monnieri wettest. Phytother. Res., 2010, 24(8), 1217-1222. [PMID: 20213670].
[10]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66(23), 2719-2728. [http://dx.doi.org/10. 1016/j.phytochem.2005.09.016]. [PMID: 16293276].
[11]
Bhandari, P.; Kumar, N.; Singh, B.; Kaur, I. Dammarane triterpenoid saponins from Bacopa monnieri. Can. J. Chem., 2009, 87, 1230-1234. [http://dx.doi.org/10.1139/V09-111].
[12]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry, 2001, 58(4), 553-556. [http://dx.doi.org/10.1016/S0031-9422(01)00275-8]. [PMID: 11576596].
[13]
Chakravarty, A.K.; Garai, S.; Masuda, K.; Nakane, T.; Kawahara, N. Bacopasides III-V: three new triterpenoid glycosides from Bacopa monniera. Chem. Pharm. Bull. (Tokyo), 2003, 51(2), 215-217. [http://dx.doi.org/10.1248/cpb.51.215]. [PMID: 12576661].
[14]
Garai, S.; Mahato, S.B.; Ohtani, K.; Yamasaki, K. Dammarane-type triterpenoid saponins from Bacopa monniera. Phytochemistry, 1996, 42(3), 815-820. [http://dx.doi.org/10.1016/0031-9422(95) 00936-1]. [PMID: 8768327].
[15]
Deepak, M.; Sangli, G.K.; Arun, P.C.; Amit, A. Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem. Anal., 2005, 16(1), 24-29. [http://dx.doi.org/10.1002/pca.805]. [PMID: 15688952].
[16]
Rastogi, M.; Ojha, R.P.; Prabu, P.C.; Devi, B.P.; Agrawal, A.; Dubey, G.P. Prevention of age-associated neurodegeneration and promotion of healthy brain ageing in female Wistar rats by long term use of bacosides. Biogerontology, 2012, 13(2), 183-195. [http://dx.doi.org/10.1007/s10522-011-9367-y]. [PMID: 22143822].
[17]
Christopher, C.; Johnson, A.J.; Mathew, P.J.; Baby, S. Elite genotypes of Bacopa monnieri, with high contents of Bacoside A and Bacopaside I, from southern Western Ghats in India. Ind. Crops Prod., 2017, 98, 76-81. [http://dx.doi.org/10.1016/j.indcrop. 2017.01.018].
[18]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry, 2001, 58(4), 553-556. [http://dx.doi.org/10.1016/S0031-9422(01)00275-8]. [PMID: 11576596].
[19]
Chakravarty, A.K.; Sarkar, T.; Masuda, K.; Shiojima, K.; Nakane, T.; Kawahara, N. Corrigendum to “Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera”. Phytochemistry, 2002, 59(3), 365. [Phytochemistry, 2001, 58(4), 553–556]. [http://dx.doi.org/10.1016/S0031-9422(01)00475-7].
[20]
Rastogi, S.; Pal, R.; Kulshreshtha, D.K. Bacoside A3--a triterpenoid saponin from Bacopa monniera. Phytochemistry, 1994, 36(1), 133-137. [http://dx.doi.org/10.1016/S0031-9422(00)97026-2]. [PMID: 7764837].
[21]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66(23), 2719-2728. [http://dx.doi.org/ 10.1016/j.phytochem.2005.09.016]. [PMID: 16293276].
[22]
Garai, S.; Mahato, S.B.; Ohtani, K.; Yamasaki, K. Dammarane-type triterpenoid saponins from Bacopa monniera. Phytochemistry, 1996, 42(3), 815-820. [http://dx.doi.org/10.1016/0031-9422(95) 00936-1]. [PMID: 8768327].
[23]
Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R18-R36. [http://dx.doi.org/10.1152/ajpregu.00327. 2006]. [PMID: 16917020].
[24]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84. [http://dx.doi.org/10.1016/j.biocel.2006.07.001]. [PMID: 16978905].
[25]
Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci., 1997, 2, 152-159. [http:// dx.doi.org/10.1016/S1360-1385(97)01018-2].
[26]
De Grey, A. The Mitochondrial Free Radical Theory of Aging; Austin, TX R.G. Landes Company, 1999.
[27]
Maxwell, S.R.J. Prospects for the use of antioxidant therapies. Drugs, 1995, 49(3), 345-361. [http://dx.doi.org/10.2165/00003495-199549030-00003]. [PMID: 7774511].
[28]
Arivazhagan, P.; Shila, S.; Kumaran, S.; Panneerselvam, C. Effect of DL-a-lipoic acid in various brain regions of aged rats. Exp. Gerontol., 2002, 37, 803-811. [http://dx.doi.org/10.1016/S0531-5565(02)00015-3]. [PMID: 12175480].
[29]
Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40(8), 959-975. [http://dx.doi.org/10.1016/S0028-3908(01)00019-3]. [PMID: 11406187].
[30]
Saini, N.; Singh, D.; Sandhir, R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem. Res., 2012, 37(9), 1928-1937. [http://dx.doi.org/10.1007/s11064-012-0811-4]. [PMID: 22700087].
[31]
Shobana, C.; Kumar, R.R.; Sumathi, T. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study. Cell. Mol. Neurobiol., 2012, 32(7), 1099-1112. [http://dx. doi.org/10.1007/s10571-012-9833-3]. [PMID: 22527857].
[32]
Singh, M.; Murthy, V.; Ramassamy, C. Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways. Toxicol. Sci., 2012, 125(1), 219-232. [http://dx.doi.org/10.1093/toxsci/kfr255]. [PMID: 21972102].
[33]
Shinomol, G.K.; Bharath, M.M. Muralidhara, Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox. Res., 2012, 22(2), 102-114. [http://dx.doi.org/10.1007/ s12640-011-9303-6]. [PMID: 22203611].
[34]
Sumathi, T.; Shobana, C.; Christinal, J.; Anusha, C. Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats. Cell. Mol. Neurobiol., 2012, 32(6), 979-987. [http://dx.doi.org/10.1007/s10571-012-9813-7]. [PMID: 22366895].
[35]
Verma, P.; Singh, P.; Gandhi, B.S. Neuromodulatory role of Bacopa monnieri on oxidative stress induced by postnatal exposure to decabromodiphenyl ether (PBDE -209) in neonate and young female mice. Iran. J. Basic Med. Sci., 2014, 17(4), 307-311. [PMID: 24904725].
[36]
Anbarasi, K.; Vani, G.; Balakrishna, K.; Devi, C.S. Creatine kinase isoenzyme patterns upon chronic exposure to cigarette smoke: protective effect of Bacoside A. Vascul. Pharmacol., 2005, 42(2), 57-61. [http://dx.doi.org/10.1016/j.vph.2005.01.003].
[37]
Anbarasi, K.; Vani, G.; Devi, C.S. Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats. J. Environ. Pathol. Toxicol. Oncol., 2005, 24(3), 225-234. [http://dx.doi.org/10.1615/JEnvPathToxOncol.v24.i3.80]. [PMID: 16050806].
[38]
Anbarasi, K.; Sabitha, K.E.; Devi, C.S. Lactate dehydrogenase isoenzyme patterns upon chronic exposure to cigarette smoke: Protective effect of bacoside A. Environ. Toxicol. Pharmacol., 2005, 20(2), 345. b
[39]
Anbarasi, K.; Vani, G.; Balakrishna, K.; Devi, C.S. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci., 2006, 78(12), 1378-1384. [http://dx.doi.org/10.1016/ j.lfs.2005.07.030]. [PMID: 16226278].
[40]
Ramasamy, S.; Chin, S.P.; Sukumaran, S.D.; Buckle, M.J.C.; Kiew, L.V.; Chung, L.Y. In silico and in vitro analysis of bacoside A aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS One, 2015, 10(5), e0126565. [http://dx.doi.org/10.1371/journal.pone.0126565]. [PMID: 25965066].
[41]
Liu, X.; Yue, R.; Zhang, J.; Shan, L.; Wang, R.; Zhang, W. Neuroprotective effects of bacopaside I in ischemic brain injury. Restor. Neurol. Neurosci., 2013, 31(2), 109-123. [PMID: 23160060].
[42]
Roesler, R.; Schröder, N. Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol. Biochem. Behav., 2011, 99(2), 155-163. [http://dx. doi.org/10.1016/j.pbb.2010.12.028]. [PMID: 21236291].
[43]
Passafaro, M.; Piëch, V.; Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci., 2001, 4(9), 917-926. [http://dx.doi.org/ 10.1038/nn0901-917]. [PMID: 11528423].
[44]
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev., 1999, 51(1), 7-61. [PMID: 10049997].
[45]
Soman, S.; Anju, T.R.; Jayanarayanan, S.; Antony, S.; Paulose, C.S. Impaired motor learning attributed to altered AMPA receptor function in the cerebellum of rats with temporal lobe epilepsy: ameliorating effects of Withania somnifera and withanolide A. Epilepsy Behav., 2013, 27(3), 484-491. [http://dx.doi.org/10.1016/ j.yebeh.2013.01.007]. [PMID: 23602240].
[46]
Yamaguchi, S.; Donevan, S.D.; Rogawski, M.A. Anticonvulsant activity of AMPA/kainate antagonists: comparison of GYKI 52466 and NBOX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res., 1993, 15(3), 179-184. [http://dx.doi.org/ 10.1016/0920-1211(93)90054-B]. [PMID: 7693450].
[47]
Rogawski, M.A.; Kurzman, P.S.; Yamaguchi, S.I.; Li, H. Role of AMPA and GluR5 kainate receptors in the development and expression of amygdala kindling in the mouse. Neuropharmacology, 2001, 40(1), 28-35. [http://dx.doi.org/10.1016/ S0028-3908(00)00112-X]. [PMID: 11077068].
[48]
Pandey, S.P.; Singh, H.K.; Prasad, S. Alterations in hippocampal oxidative stress, expression of AMPA receptor GluR2 subunit and associated spatial memory loss by Bacopa monnieri extract (CDRI-08) in streptozotocin-induced diabetes mellitus type 2 mice. PLoS One, 2015, 10(7), e0131862. [http://dx.doi.org/10.1371/journal. pone.0131862]. [PMID: 26161865].
[49]
Rani, A.; Prasad, S. A special extract of Bacopa monnieri (CDRI-08)-restored memory in CoCl2-hypoxia mimetic mice is associated with upregulation of Fmr-1 gene expression in hippocampus. Evid. Based Complement. Alternat. Med., 2015, 2015, 347978. [http:// dx.doi.org/10.1155/2015/347978]. [PMID: 26413121].
[50]
Khan, R.; Krishnakumar, A.; Paulose, C.S. Decreased glutamate receptor binding and NMDA R1 gene expression in hippocampus of pilocarpine-induced epileptic rats: neuroprotective role of Bacopa monnieri extract. Epilepsy Behav., 2008, 12(1), 54-60. [http://dx.doi.org/10.1016/j.yebeh.2007.09.021]. [PMID: 18086456].
[51]
Krishnakumar, A.; Anju, T.R.; Abraham, P.M.; Paulose, C.S. Alteration in 5-HT2C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri. Neurochem. Res., 2015, 40(1), 216-225. [http://dx.doi.org/10.1007/s11064-014-1472-2]. [PMID: 25503823].
[52]
Piyabhan, P.; Wetchateng, T. Neuroprotective effects of Bacopa monnieri (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. J. Med. Assoc. Thai., 2014, 97(Suppl. 8), S50-S55. [PMID: 25518293].
[53]
Piyabhan, P.; Wannasiri, S.; Naowaboot, J. Bacopa monnieri (Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia. Clin. Exp. Pharmacol. Physiol., 2016, 43(12), 1234-1242. [http://dx.doi.org/10.1111/ 1440-1681.12658]. [PMID: 27562725].
[54]
Kumar, S.; Mondal, A.C. Neuroprotective, neurotrophic and anti-oxidative role of Bacopa monnieri on CUS induced model of depression in rat. Neurochem. Res., 2016, 41(11), 3083-3094. [http://dx.doi.org/10.1007/s11064-016-2029-3]. [PMID: 27506204].
[55]
Hazra, S.; Kumar, S.; Saha, G.K.; Mondal, A.C. Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: effects of phytochemical, Bacopa Monnieri. Psychiatry Investig., 2017, 14(1), 74-80. [http://dx.doi.org/10. 4306/pi.2017.14.1.74]. [PMID: 28096878].
[56]
Mondal, P.; Trigun, S.K. Bacopa monnieri extract (CDRI-08) modulates the NMDA receptor subunits and nNOS-apoptosis axis in cerebellum of hepatic encephalopathy rats. Evid. Based Complement. Alternat. Med., 2015, 2015, 535013. [http://dx.doi. org/10.1155/2015/535013]. [PMID: 26413124].
[57]
Verma, P.; Gupta, R.K.; Gandhi, B.S.; Singh, P. CDRI-08 attenuates REST/NRSF-mediated expression of NMDAR1 gene in PBDE-209-exposed mice brain. Evid. Based Complement. Alternat. Med., 2015, 2015, 403840. [http://dx.doi.org/10.1155/2015/ 403840]. [PMID: 26413122].
[58]
Rai, R.; Singh, H.K.; Prasad, S. A special extract of Bacopa monnieri (CDRI-08) restores learning and memory by upregulating expression of the NMDA receptor subunit GluN2B in the brain of scopolamine-induced amnesic mice. Evid. Based Complement. Alternat. Med., 2015, 2015, 254303. [http://dx.doi.org/10.1155/ 2015/254303]. [PMID: 26413117].
[59]
Le, X.T.; Pham, H.T.N.; Do, P.T.; Fujiwara, H.; Tanaka, K.; Li, F.; Van Nguyen, T.; Nguyen, K.M.; Matsumoto, K. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem. Res., 2013, 38(10), 2201-2215. [http://dx.doi.org/10. 1007/s11064-013-1129-6]. [PMID: 23949198].
[60]
Dwivedi, S.; Nagarajan, R.; Hanif, K.; Siddiqui, H.H.; Nath, C.; Shukla, R. Standardized extract of Bacopa monniera attenuates okadaic acid induced memory dysfunction in rats: effect on Nrf2 pathway. Evid. Based Complement. Alternat. Med., 2013, 2013, 294501. [http://dx.doi.org/10.1155/2013/294501]. [PMID: 24078822].
[61]
Bauer, B.; Hartz, A.M.; Fricker, G.; Miller, D.S. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol. Pharmacol., 2004, 66(3), 413-419. [PMID: 15322232].
[62]
Evan Prince, S.; Udhaya, L.B.; Sunitha, P.S.; Arumugam, G. Reparation of isoniazid and rifampicin combinatorial therapy-induced hepatotoxic effects by Bacopa monnieri. Pharmacology, 2016, 98(1-2), 29-34. [http://dx.doi.org/10.1159/000444856]. [PMID: 27007136].
[63]
Singh, R.; Rachumallu, R.; Bhateria, M.; Panduri, J.; Bhatta, R.S. In vitro effects of standardized extract of Bacopa monniera and its five individual active constituents on human P-glycoprotein activity. Xenobiotica, 2015, 45(8), 741-749. [http://dx.doi.org/ 10.3109/00498254.2015.1017752]. [PMID: 25869246].
[64]
Mathew, J.; Balakrishnan, S.; Antony, S.; Abraham, P.M.; Paulose, C.S. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A. J. Biomed. Sci., 2012, 19(1), 25. [http://dx.doi.org/10.1186/1423-0127-19-25]. [PMID: 22364254].
[65]
Thomas, R.B.; Joy, S.; Ajayan, M.S.; Paulose, C.S. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats. Cell. Mol. Neurobiol., 2013, 33(8), 1065-1074. [http://dx.doi.org/10.1007/s10571-013-9973-0]. [PMID: 23975094].
[66]
Zu, X.; Zhang, M.; Li, W.; Xie, H.; Lin, Z.; Yang, N.; Liu, X.; Zhang, W. Zhang, W. Antidepressant-like effect of Bacopaside I in mice exposed to chronic unpredictable mild stress by modulating the hypothalamic-pituitary-adrenal axis function and activating BDNF signaling pathway. Neurochem. Res., 2017, 42(11), 3233-3244. [Liu, X]. [http://dx.doi.org/10.1007/s11064-017-2360-3] [PMID: 28758176]
[67]
Pei, J.V.; Kourghi, M.; De Ieso, M.L.; Campbell, E.M.; Dorward, H.S.; Hardingham, J.E.; Yool, A.J. Differential inhibition of water and ion channel activities of mammalian aquaporin-1 by two structurally related bacopaside compounds derived from the medicinal plant Bacopa monnieri. Mol. Pharmacol., 2016, 90(4), 496-507. [http://dx.doi.org/10.1124/mol.116.105882]. [PMID: 27474162].
[68]
Le, X.T.; Nguyet Pham, H.T.; Van Nguyen, T.; Minh Nguyen, K.; Tanaka, K.; Fujiwara, H.; Matsumoto, K. Protective effects of Bacopa monnieri on ischemia-induced cognitive deficits in mice: the possible contribution of bacopaside I and underlying mechanism. J. Ethnopharmacol., 2015, 164, 37-45. [http://dx.doi. org/10.1016/j.jep.2015.01.041]. [PMID: 25660331].
[69]
Singh, R.; Ramakrishna, R.; Bhateria, M.; Bhatta, R.S. In vitro evaluation of Bacopa monniera extract and individual constituents on human recombinant monoamine oxidase enzymes. Phytother. Res., 2014, 28(9), 1419-1422. [http://dx.doi.org/10.1002/ptr.5116]. [PMID: 24449518].
[70]
Schroeder, U.; Sommerfeld, P.; Ulrich, S.; Sabel, B.A. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J. Pharm. Sci., 1998, 87(11), 1305-1307. [http://dx. doi.org/10.1021/js980084y]. [PMID: 9811481].
[71]
Leroux, J.C.; Allémann, E.; De Jaeghere, F.; Doelker, E.; Gurny, R. Biodegradable nanoparticles-from sustained release formulations to improved site specific drug delivery. J. Control. Release, 1996, 39(2-3), 339-350. [http://dx.doi.org/10.1016/0168-3659(95)00164-6].
[72]
Budhian, A.; Siegel, S.J.; Winey, K.I. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J. Microencapsul., 2005, 22(7), 773-785. [http://dx. doi.org/10.1080/02652040500273753]. [PMID: 16421087].
[73]
Mu, L.; Feng, S.S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release, 2003, 86(1), 33-48. [http:// dx.doi.org/10.1016/S0168-3659(02)00320-6]. [PMID: 12490371].
[74]
Damgé, C.; Maincent, P.; Ubrich, N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 2007, 117(2), 163-170. [http://dx.doi.org/10.1016/ j.jconrel.2006.10.023]. [PMID: 17141909].
[75]
Ahmad, Z.; Pandey, R.; Sharma, S.; Khuller, G.K. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J. Chest Dis. Allied Sci., 2006, 48(3), 171-176. [PMID: 18610673].
[76]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(2), 241-250. [http://dx.doi.org/10.1007/ s10549-007-9591-y]. [PMID: 17476588].
[77]
Cai, Q.; Wang, L.; Deng, G.; Liu, J.; Chen, Q.; Chen, Z. Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am. J. Transl. Res., 2016, 8(2), 749-764. [PMID: 27158367].
[78]
van Vlerken, L.E.; Vyas, T.K.; Amiji, M.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res., 2007, 24(8), 1405-1414. [http://dx.doi.org/10.1007/ s11095-007-9284-6]. [PMID: 17393074].
[79]
Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Analyt. Chem., 2016, 80, 30-40. [http://dx.doi.org/10.1016/j.trac. 2015.06.014].
[80]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360. [http://dx.doi.org/10.1038/ nrd1088]. [PMID: 12750738].
[81]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18. [http://dx.doi.org/10.1016/ j.colsurfb.2009.09.001]. [PMID: 19782542].
[82]
Sah, H.; Thoma, L.A.; Desu, H.R.; Sah, E.; Wood, G.C. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int. J. Nanomedicine, 2013, 8, 747-765. [http://dx.doi.org/10.2147/IJN.S40579]. [PMID: 23459088].
[83]
Jose, S.; Sowmya, S.; Cinu, T.A.; Aleykutty, N.A.; Thomas, S.; Souto, E.B. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur. J. Pharm. Sci., 2014, 63, 29-35. [http://dx.doi.org/10.1016/j.ejps.2014.06.024]. [PMID: 25010261].
[84]
Nellore, J.; Pauline, C.; Amarnath, K. Bacopa monnieri phytochemicals mediated synthesis of platinum nanoparticles and its neurorescue effect on 1-methyl 4-phenyl 1,2,3,6 tetrahydropyridine-induced experimental parkinsonism in zebrafish. J. Neurodegener. Dis., 2013, 2013, 972391. [http://dx.doi.org/10.1155/2013/972391]. [PMID: 26317003].
[85]
Mahitha, B.; Deva Prasad Raju, B.; Mallikarjuna, K. Durga Mahalakshmi, ChN.; Sushmal, N.J. Bacopa monniera stabilized silver nanoparticles attenuates oxidative stress induced by aluminum in albino mice. J. Nanosci. Nanotechnol., 2015, 15(2), 1101-1109. [http://dx.doi.org/10.1166/jnn.2015.8995]. [PMID: 26353618].