Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Review on High Performance Liquid Chromatographic Methods for the Determination of Metformin

Author(s): Gagandeep Kaur*, Sonali Garg, Pratima Sharma and Dhiraj Sud

Volume 17, Issue 6, 2021

Published on: 10 March, 2020

Page: [754 - 767] Pages: 14

DOI: 10.2174/1573411016666200310141939

Price: $65

Abstract

Background: The presence of pharmaceuticals (PACs) drugs in the environment and their detection and quantification have emerged as one of the challenging issues for the scientific community.

Introduction: The gold standard, an anti-diabetic drug, Metformin has a strong potential to contaminate the aquatic bodies, being a highly polar drug. Different analytical methods based on spectroscopic evaluation or chromatographic techniques have been developed to find out the concentration of drug/ their metabolites.

Methods: This review article discussed the chromatographic techniques for the analysis of Metformin (in ng/L to μg/L) in aqueous samples, pharmaceutical drugs and biological fluids such as urine and human plasma are High-Performance Liquid Chromatography (HPLC), Reverse-Phase High- Performance Liquid Chromatography (RP-HPLC), High-Performance Thin-layer Chromatography (HPTLC), Hydrophilic Interaction Liquid Chromatography HILIC-MS/MS, Liquid Chromatographic- tandem mass spectrometric (LC-MS-MS), Ultra-High Performance Liquid Chromatography (UPLC).

Results: The relevance modifications of traditional HPLC methods for the separation of the mixture of drugs with a focus on the lesser time, better resolution, sensitivity, symmetry of peaks, the limit of detection and accuracy of the results have been envisaged through research findings. Hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry method offered the possible solution for highly polar drugs detection and quantification in effluent and surface water samples.

Conclusion: HPLC based analytical techniques offer the advantages viz. less time requirement, minimum usage of organic solvents and better separation and quantification of Metformin. The futuristic research approach lies in the development of newer extraction strategies, mobile phases, and adsorbent materials for the HPLC based separations.

Keywords: Biological fluids, diabetes, guanylurea, HPLC, Metformin (MET), pharmaceutical pollutants.

Graphical Abstract

[1]
Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J. Hazard. Mater., 2012, 239-240, 1-18.
[http://dx.doi.org/10.1016/j.jhazmat.2012.05.040] [PMID: 22771351]
[2]
Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol., 2009, 43(3), 597-603.
[http://dx.doi.org/10.1021/es801845a] [PMID: 19244989]
[3]
Ort, C.; Lawrence, M.G.; Rieckermann, J.; Joss, A. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review Environ. Sci. Technol., 2010, 44(16), 6024-6035.
[http://dx.doi.org/10.1021/es100779n] [PMID: 20704196]
[4]
Ternes, T.A.; Joss, A.; Siegrist, H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ. Sci. Technol., 2004, 38(20), 392A-399A.
[http://dx.doi.org/10.1021/es040639t] [PMID: 15543724]
[5]
Yan, S.; Yao, B.; Lian, L.; Lu, X.; Snyder, S.A.; Li, R.; Song, W. Development of fluorescence surrogates to predict the photochemical transformation of pharmaceuticals in wastewater effluents. Environ. Sci. Technol., 2017, 51(5), 2738-2747.
[http://dx.doi.org/10.1021/acs.est.6b05251] [PMID: 28199788]
[6]
Weigel, S.; Kuhlmann, J.; Hühnerfuss, H. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci. Total Environ., 2002, 295(1-3), 131-141.
[http://dx.doi.org/10.1016/S0048-9697(02)00064-5] [PMID: 12186282]
[7]
Cai, Z.; Dwivedi, A.D.; Lee, W.N.; Zhao, X.; Liu, W.; Sillanpää, M.; Zhao, D.; Huang, C.H.; Fu, J. Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environ. Sci. Nano, 2018, 5(1), 27-47.
[http://dx.doi.org/10.1039/C7EN00644F]
[8]
Leung, H.W.; Jin, L.; Wei, S.; Tsui, M.M.P.; Zhou, B.; Jiao, L.; Cheung, P.C.; Chun, Y.K.; Murphy, M.B.; Lam, P.K. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China. Environ. Health Perspect., 2013, 121(7), 839-846.
[http://dx.doi.org/10.1289/ehp.1206244] [PMID: 23665928]
[9]
Ma, R.; Wang, B.; Lu, S.; Zhang, Y.; Yin, L.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. Sci. Total Environ., 2016, 557-558, 268-275.
[http://dx.doi.org/10.1016/j.scitotenv.2016.03.053] [PMID: 27016674]
[10]
Alwan, A. Global status report on noncommunicable diseases 2010; World Health Organization: Geneva, 2011.
[11]
Narayan, K.M.V.; Boyle, J.P.; Geiss, L.S.; Saaddine, J.B.; Thompson, T.J. Impact of recent increase in incidence on future diabetes burden: U.S., 2005-2050. Diabetes Care, 2006, 29(9), 2114-2116.
[http://dx.doi.org/10.2337/dc06-1136] [PMID: 16936162]
[12]
Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus (WHO/NCD/NCS/99.2); World Health Organization: Geneva, 1999.
[13]
Gale, E.A. Type 1 diabetes in the young: The harvest of sorrow goes on. Diabetologia, 2005, 48(8), 1435-1438.
[http://dx.doi.org/10.1007/s00125-005-1833-0] [PMID: 16021415]
[14]
Östman, J.; Lönnberg, G.; Arnqvist, H.J.; Blohmé, G.; Bolinder, J.; Ekbom Schnell, A.; Eriksson, J.W.; Gudbjörnsdottir, S.; Sundkvist, G.; Nyström, L. Gender differences and temporal variation in the incidence of type 1 diabetes: results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983-2002. J. Intern. Med., 2008, 263(4), 386-394.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01896.x] [PMID: 18205768]
[15]
Diabetes Fact sheet N°312, 2013.
[16]
Kibiti, C.M.; Afolayan, A.J. Herbal therapy: A review of emerging pharmacological tools in the management of diabetes mellitus in Africa. Pharmacogn. Mag., 2015, 11(44), 258-274.
[19]
British Pharmacopoeia; Her Majesty’s Stationery Office: London, UK, 2007.
[20]
Bailey, C.J. Metformin: Historical overview. Diabetologia, 2017, 60(9), 1566-1576.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[21]
Scheurer, M.; Michel, A.; Brauch, H-J.; Ruck, W.; Sacher, F. Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment. Water Res., 2012, 46(15), 4790-4802.
[http://dx.doi.org/10.1016/j.watres.2012.06.019] [PMID: 22770965]
[22]
Kyzas, G.Z.; Nanaki, S.G.; Koltsakidou, A.; Papageorgiou, M.; Kechagia, M.; Bikiaris, D.N.; Lambropoulou, D.A. Effectively designed molecularly imprinted polymers for selective isolation of the antidiabetic drug metformin and its transformation product guanylurea from aqueous media. Anal. Chim. Acta, 2015, 866, 27-40.
[http://dx.doi.org/10.1016/j.aca.2015.01.045] [PMID: 25732690]
[23]
WHO. Global report on diabetes. World Health Organization, Switzerland. WHO Collaborating Center for Drug Statistics Methodology , 2.
[24]
Cárceles-Rodríguez, C.M.; Fernández-Varón, E.; Martín-Gimenez, T.; Aguirre, C.; Arion, A.; Rodríguez, M.J.; Ayala, I. Pharmacokinetics of metformin in combination with sitagliptin in adult horses after enteral administration. J. Equine Vet. Sci., 2019, 72, 84-88.
[http://dx.doi.org/10.1016/j.jevs.2018.10.017] [PMID: 30929789]
[25]
Beckmann, R. Resorption, Verteilung im organismus und ausscheidung von metformin. Diabetologia, 1969, 5(5), 318-324.
[http://dx.doi.org/10.1007/BF00452906] [PMID: 5360810]
[26]
Chen, M.; Ohman, K.; Metcalfe, C.; Ikonomou, M.G.; Amatya, P.L.; Wilson, J. Pharmaceuticals and endocrine disruptors in wastewater treatment effluents and in the water supply system of Calgary, Alberta, Canada. Water Quality Res. J., 2006, 41(4), 351-364.
[http://dx.doi.org/10.2166/wqrj.2006.039]
[27]
Blair, B.D.; Crago, J.P.; Hedman, C.J.; Klaper, R.D. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere, 2013, 93(9), 2116-2123.
[http://dx.doi.org/10.1016/j.chemosphere.2013.07.057] [PMID: 23973285]
[28]
Niemuth, N.J.; Klaper, R.D. Low-dose metformin exposure causes changes in expression of endocrine disruption-associated genes. Aquat. Toxicol., 2018, 195, 33-40.
[http://dx.doi.org/10.1016/j.aquatox.2017.12.003] [PMID: 29248761]
[29]
Mieszkowska, N.; Genner, M.J.; Hawkins, S.J.; Sims, D.W. Chapter 3. Effects of climate change and commercial fishing on Atlantic cod Gadus morhua. Adv. Mar. Biol., 2009, 56, 213-273.
[http://dx.doi.org/10.1016/S0065-2881(09)56003-8] [PMID: 19895976]
[30]
Scheurer, M.; Sacher, F.; Brauch, H-J. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany. J. Environ. Monit., 2009, 11(9), 1608-1613.
[http://dx.doi.org/10.1039/b909311g] [PMID: 19724829]
[31]
Trautwein, C.; Berset, J-D.; Wolschke, H.; Kümmerer, K. Occurrence of the antidiabetic drug Metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle. Environ. Int., 2014, 70, 203-212.
[http://dx.doi.org/10.1016/j.envint.2014.05.008] [PMID: 24954924]
[32]
Oosterhuis, M.; Sacher, F.; Ter Laak, T.L. Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data. Sci. Total Environ., 2013, 442, 380-388.
[http://dx.doi.org/10.1016/j.scitotenv.2012.10.046] [PMID: 23183121]
[33]
Statens Serum Institut. 2016.http://www.medstat.dk/en
[34]
Lindim, C.; van Gils, J.; Georgieva, D.; Mekenyan, O.; Cousins, I.T. Evaluation of human pharmaceutical emissions and concentrations in Swedish river basins. Sci. Total Environ., 2016, 572, 508-519.
[http://dx.doi.org/10.1016/j.scitotenv.2016.08.074] [PMID: 27552129]
[36]
CDA. Backgrounder-About Diabetes. Canadian Diabetes Association. Available from: http://www.diabetes.ca/getmedia/71283b83-d37a-489f-bfe4-90c38ee29921/backgrounder-about-diabetes-english.pdf
[38]
Escher, B.I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C.S. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res., 2011, 45(1), 75-92.
[http://dx.doi.org/10.1016/j.watres.2010.08.019] [PMID: 20828784]
[39]
CDC. Age-Adjusted Percentage of Adults with Diabetes Using Diabetes Medication, by Type of Medication, United States, 1997-2011; Centers for Disease Control and Prevention: Atlanta, 2013.
[40]
Markiewicz, M.; Jungnickel, C.; Stolte, S.; Białk-Bielińska, A.; Kumirska, J.; Mrozik, W. Primary degradation of antidiabetic drugs. J. Hazard. Mater., 2017, 324(Pt 8), 428-435.
[http://dx.doi.org/10.1016/j.jhazmat.2016.11.008] [PMID: 27829515]
[41]
Markiewicz, M.; Jungnickel, C.; Stolte, S.; Białk-Bielińska, A.; Kumirska, J.; Mrozik, W. Ultimate biodegradability and ecotoxicity of orally administered antidiabetic drugs. J. Hazard. Mater., 2017, 333, 154-161.
[http://dx.doi.org/10.1016/j.jhazmat.2017.03.030] [PMID: 28349868]
[42]
[43]
Bradley, P.M.; Journey, C.A.; Button, D.T.; Carlisle, D.M.; Clark, J.M.; Mahler, B.J.; VanMetre, P.C. Metformin and other pharmaceuticals widespread in wadeable streams of the Southeastern United States. Environ. Sci. Technol. Lett., 2016, 3(6), 243-249.
[http://dx.doi.org/10.1021/acs.estlett.6b00170]
[44]
Bradley, P.M.; Battaglin, W.A.; Clark, J.M.; Henning, F.P.; Hladik, M.L.; Iwanowicz, L.R.; Journey, C.A.; Riley, J.W.; Romanok, K.M. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA. Environ. Toxicol. Chem., 2017, 36(11), 3045-3056.
[http://dx.doi.org/10.1002/etc.3873] [PMID: 28636199]
[45]
Statens Serum Institut. 2016.http://www.medstat.dk/en
[46]
Tao, Y.; Chen, B.; Zhang, B. Occurrence, Impact, Analysis and Treatment of Metformin and Guanylurea in Coastal Aquatic Environments of Canada, USA and Europe. Advances in Marine Biology, 2018.
[47]
Yuen, K.H.; Peh, K.K. Simple high-performance liquid chromatographic method for the determination of metformin in human plasma. J. Chromatogr. B Biomed. Sci. Appl., 1998, 710(1-2), 243-246.
[http://dx.doi.org/10.1016/S0378-4347(98)00117-0] [PMID: 9686895]
[48]
Zhang, M.; Moore, G.A.; Lever, M.; Gardiner, S.J.; Kirkpatrick, C.M.; Begg, E.J. Rapid and simple high-performance liquid chromatographic assay for the determination of metformin in human plasma and breast milk. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 766(1), 175-179.
[http://dx.doi.org/10.1016/S0378-4347(01)00430-3] [PMID: 11824394]
[49]
Hoffman, A.; Stepensky, D.; Lavy, E.; Eyal, S.; Klausner, E.; Friedman, M. Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms. Int. J. Pharm., 2004, 277(1-2), 141-153.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.047] [PMID: 15158977]
[50]
Heinig, K.; Bucheli, F. Fast liquid chromatographic-tandem mass spectrometric (LC-MS-MS) determination of metformin in plasma samples. J. Pharm. Biomed. Anal., 2004, 34(5), 1005-1011.
[http://dx.doi.org/10.1016/j.jpba.2003.11.017] [PMID: 15019034]
[51]
Georgita, C.; Albu, F.; David, V.; Medvedovici, A. Simultaneous assay of metformin and glibenclamide in human plasma based on extraction-less sample preparation procedure and LC/(APCI)MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 854(1-2), 211-218.
[http://dx.doi.org/10.1016/j.jchromb.2007.04.032] [PMID: 17500048]
[52]
Mistri, H.N.; Jangid, A.G.; Shrivastav, P.S. Liquid chromatography tandem mass spectrometry method for simultaneous determination of antidiabetic drugs metformin and glyburide in human plasma. J. Pharm. Biomed. Anal., 2007, 45(1), 97-106.
[http://dx.doi.org/10.1016/j.jpba.2007.06.003] [PMID: 17628384]
[53]
Koseki, N.; Kawashita, H.; Niina, M.; Nagae, Y.; Masuda, N. Development and validation for high selective quantitative determination of metformin in human plasma by cation exchanging with normal-phase LC/MS/MS. J. Pharm. Biomed. Anal., 2005, 36(5), 1063-1072.
[http://dx.doi.org/10.1016/j.jpba.2004.09.007] [PMID: 15620533]
[54]
Porta, V.; Schramm, S.G.; Kano, E.K.; Koono, E.E.; Armando, Y.P.; Fukuda, K.; Serra, C.H. HPLC-UV determination of metformin in human plasma for application in pharmacokinetics and bioequivalence studies. J. Pharm. Biomed. Anal., 2008, 46(1), 143-147.
[http://dx.doi.org/10.1016/j.jpba.2007.10.007] [PMID: 18031967]
[55]
Althakafy, J.T.; Kulsing, C.; Grace, M.R.; Marriott, P.J. Liquid chromatography-quadrupole Orbitrap mass spectrometry method for selected pharmaceuticals in water samples. J. Chromatogr. A, 2017, 1515, 164-171.
[http://dx.doi.org/10.1016/j.chroma.2017.08.003] [PMID: 28803645]
[56]
Malleswararao, C.S.N.; Suryanarayana, M.V.; Mukkanti, K. Simultaneous Determination of Sitagliptin Phosphate Monohydrate and Metformin Hydrochloride in Tablets by a Validated UPLC Method. Sci. Pharm., 2012, 80(1), 139-152.
[http://dx.doi.org/10.3797/scipharm.1110-13] [PMID: 22396910]
[57]
El-Bagary, R.I.; Elkady, E.F.; Ayoub, B.M. Liquid chromatographic determination of sitagliptin either alone or in ternary mixture with metformin and sitagliptin degradation product. Talanta, 2011, 85(1), 673-680.
[http://dx.doi.org/10.1016/j.talanta.2011.04.051] [PMID: 21645757]
[58]
Thomas, A.B.; Patil, S.D.; Nanda, R.K.; Kothapalli, L.P.; Bhosle, S.S.; Deshpande, A.D. Stability-indicating HPTLC method for simultaneous determination of nateglinide and metformin hydrochloride in pharmaceutical dosage form. Saudi Pharm. J., 2011, 19(4), 221-231.
[http://dx.doi.org/10.1016/j.jsps.2011.06.005] [PMID: 23960763]
[59]
Fatema, K.; Rahman, M.Z.; Haque, T.; Azad, M.A.K.; Reza, M.S. Development and Validation of a Simple Method for Simultaneous Estimation of Metformin Hydrochloride and Gliclazide in Tablets by using Reversed-Phase High Performance Liquid Chromatography. Dhaka Univ. J. Pharm. Sci., 1970, 9(2), 83-89.
[http://dx.doi.org/10.3329/dujps.v9i2.7884]
[60]
Martín, J.; Buchberger, W.; Santos, J.L.; Alonso, E.; Aparicio, I. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 895-896, 94-101.
[http://dx.doi.org/10.1016/j.jchromb.2012.03.023] [PMID: 22483984]
[61]
Umapathi, P.; Ayyappan, J.; Quine, S. Quantitative determination of metformin hydrochloride in tablet formulation containing croscarmellose sodium as disintegrant by HPLC and UV Spectrophotometry. Trop. J. Pharm. Res., 2012, 11(1), 107-116.
[http://dx.doi.org/10.4314/tjpr.v11i1.14]
[62]
Pontarolo, R.; Gimenez, A.C.; de Francisco, T.M.G.; Ribeiro, R.P.; Pontes, F.L.D.; Gasparetto, J.C. Simultaneous determination of metformin and vildagliptin in human plasma by a HILIC-MS/MS method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 965, 133-141.
[http://dx.doi.org/10.1016/j.jchromb.2014.06.023] [PMID: 25016166]
[63]
Neelima, K.; Prasad, Y.R. Analytical method development and validation of metformin, voglibose, glimepiride in bulk and combined tablet dosage form by gradient RP-HPLC. Pharm. Methods, 2014, 5(1), 27-33.
[http://dx.doi.org/10.5530/phm.2014.1.5]
[64]
Ghoshdastidar, A.J.; Fox, S.; Tong, A.Z. The presence of the top prescribed pharmaceuticals in treated sewage effluents and receiving waters in Southwest Nova Scotia, Canada. Environ. Sci. Pollut. Res. Int., 2015, 22(1), 689-700.
[http://dx.doi.org/10.1007/s11356-014-3400-z] [PMID: 25099660]
[65]
Merey, H.A.; Ramadan, N.K.; Diab, S.S.; Moustafa, A.A. Chromatographic methods for the simultaneous determination of binary mixture of Saxagliptin HCl and Metformin HCl. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 311-317.
[http://dx.doi.org/10.1016/j.bfopcu.2017.04.002]
[66]
Siddiqui, F.A.; Sher, N.; Shafi, N.; Bahadur, S.S. Concurrent determination of Metformin and some ACE inhibitors: Its application to Pharmacokinetics. Arab. J. Chem., 2013, 10, S2979-S2987.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.035]
[67]
Boulard, L.; Dierkes, G.; Ternes, T. Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: Benefits and limitations. J. Chromatogr. A, 2018, 1535, 27-43.
[http://dx.doi.org/10.1016/j.chroma.2017.12.023] [PMID: 29325802]
[68]
Gedawy, A.; Al-Salami, H.; Dass, C.R. Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. Yao Wu Shi Pin Fen Xi, 2018, 2018, 1-8.
[PMID: 30648585]
[69]
Strugaru, A-M.; Kazakova, J.; Butnaru, E.; Caba, I-C.; Bello-López, M.Á.; Fernández-Torres, R. Simultaneous determination of metformin and glimepiride in human serum by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry detection. J. Pharm. Biomed. Anal., 2018, 165, 276-283.
[PMID: 30572192]
[70]
Oertel, R.; Baldauf, J.; Rossmann, J. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the quantification of the antidiabetic drug metformin and six others pharmaceuticals in wastewater. J. Chromatogr. A, 2018, 1556, 73-80.
[http://dx.doi.org/10.1016/j.chroma.2018.04.068] [PMID: 29748091]
[71]
Liu, A.; Coleman, S.P. Determination of metformin in human plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(29), 3695-3700.
[http://dx.doi.org/10.1016/j.jchromb.2009.09.020] [PMID: 19783231]
[72]
Scherf-Clavel, O.; Kinzig, M.; Stoffel, M.S.; Fuhr, U.; Sörgel, F.A. HILIC-MS/MS assay for the quantification of metformin and sitagliptin in human plasma and urine: A tool for studying drug transporter perturbation. J. Pharm. Biomed. Anal., 2019, 175112754.
[http://dx.doi.org/10.1016/j.jpba.2019.07.002] [PMID: 31336285]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy