Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

An Overview on Eco-Friendly Polymer Composites for Heavy Metal Ion Remediation

Author(s): Muhammad Shahid Nazir*, Bushra Anees Palvasha, Zaman Tahir, Sadaf ul Hassan, Zulfiqar Ali, Majid Niaz Akhtar, Kashuf Azam and Mohd. Azmuddin Abdullah*

Volume 17, Issue 6, 2021

Published on: 11 March, 2020

Page: [737 - 753] Pages: 17

DOI: 10.2174/1573411016666200311105838

Price: $65

Abstract

Background: Water contamination by noxious heavy metals due to urbanization is a global environmental problem. Heavy metal ions pollution makes the water unsuitable for drinking and is also highly toxic to human beings and eco-system. The remediation of heavy metals is therefore very crucial.

Methods: Adsorbents based on biopolymer and eco-friendly polymer composites have been developed and fabricated to remediate and remove heavy metals from the ecosystem.

Results: In recent years, biocomposites have been successful as cost-effective adsorbents for the remediation of various contaminants with their eco-friendly nature and sustainability.

Conclusion: This review article gives an overview on the remediation of heavy metals using green biocomposites.

Keywords: Biodegradable, biopolymers, eco-friendly, environmental engineering, heavy metal ion remediation, waterpollution.

Graphical Abstract

[1]
La Mantia, F.; Morreale, M. Green composites: A brief review. J. Comp. Part A: Appl. Sci. Manufact., 2011, 42, 579-588.
[http://dx.doi.org/10.1016/j.compositesa.2011.01.017]
[2]
Satyanarayana, K.G.; Arizaga, G.G.; Wypych, F. Biodegradable composites based on lignocellulosic fibers-An overview. J. Prog. Polym. Sci., 2009, 34, 982-1021.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.12.002]
[3]
Kumar, M.; Dosanjh, H.S.; Singh, H. surface modification of spinel ferrite with biopolymer for adsorption of cationic and anionic dyes in single and ternary dye system. J Fibers Polymers., 2019, 20, 739-751.
[http://dx.doi.org/10.1007/s12221-019-8462-6]
[4]
Abdel-Aziz, M.A.; Younis, S.A.; Moustafa, Y.M.; Khalil, M.M.H. Synthesis of recyclable carbon/lignin biocomposite sorbent for in-situ uptake of BTX contaminants from wastewater. J. Environ. Manage., 2019, 233, 459-470.
[http://dx.doi.org/10.1016/j.jenvman.2018.12.044]
[5]
Loureiro, N.C.; Esteves, J.L. Green composites in automotive interior parts: A solution using cellulosic fibers.Green Composites for Automotive Applications;; Koronis, G.; Silva, A., Eds.; Woodhead Publishing, 2019, pp. 81-97.
[http://dx.doi.org/10.1016/B978-0-08-102177-4.00004-5]
[6]
Zini, E.; Scandola, M. Green composites: An overview. J. Polym. Compos., 2011, 32, 1905-1915.
[http://dx.doi.org/10.1002/pc.21224]
[7]
Rana, A.; Mandal, A.; Bandyopadhyay, S. Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. J. Comp. Sci. Technol., 2003, 63, 801-806.
[http://dx.doi.org/10.1016/S0266-3538(02)00267-1]
[8]
Verma, D.; Fortunati, E. Biopolymer processing and its composites: An introduction. Biomass, Biopolymer-Based Materials, and Bioenergy; Verma, D.; Fortunati, E.;; Jain, S.; Zhang, X., Eds.; Woodhead Publishing, 2019, pp. 3-23.
[http://dx.doi.org/10.1016/B978-0-08-102426-3.00001-1]
[9]
Sharma, A.; Rao, N.N.; Krupashankara, M.S. Development of eco-friendly and biodegradable Bio composites. Mat. Today: Proceed., 2018, 5, 20987-20995.
[10]
Shahid, M.; Mohammad, F. Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers- A review. J. Indus. Eng. Chem. Res., 2013, 52, 5245-5260.
[http://dx.doi.org/10.1021/ie303627x]
[11]
Abu Danso, E.; Peräniemi, S.; Leiviskä, T.; Kim, T.; Tripathi, K.M.; Bhatnagar, A. Synthesis of clay-cellulose biocomposite for the removal of toxic metal ions from aqueous medium. J. Hazard. Mater., 2019, 2019, 120871.
[12]
Sarasini, F.; Fiore, V. A systematic literature review on less common natural fibres and their biocomposites. J. Clean. Prod., 2018, 195, 240-267.
[http://dx.doi.org/10.1016/j.jclepro.2018.05.197]
[13]
Kaur, A.; Sharma, S. Removal of heavy metals from waste water by using various adsorbents-A review. Indian J. Sci. Technol., 2017, 2017, p. 10.
[14]
Zhao, G.; Huang, X.; Tang, Z.; Huang, Q.; Niu, F.; Wang, X. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polym. Chem., 2018, 9, 3562-3582.
[http://dx.doi.org/10.1039/C8PY00484F]
[15]
Sadeghizadeh, A.; Ebrahimi, F.; Heydari, M.; Tahmasebikohyani, M.; Ebrahimi, F.; Sadeghizadeh, A. Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study. J. Environ. Manage., 2019, 232, 342-353.
[http://dx.doi.org/10.1016/j.jenvman.2018.11.047]
[16]
Dong, L.; Yu, W.; Liu, M.; Liu, Y.; Shao, Q.; Li, A.; Yan, W.; Zhang, J. Novel composite electrode of the reduced graphene oxide nanosheets with gold nanoparticles modified by glucose oxidase for electrochemical reactions. J. Catalysts., 2019, 9, 764.
[http://dx.doi.org/10.3390/catal9090764]
[17]
Kayan, A. Inorganic-organic hybrid materials and their adsorbent properties. J. Adv. Compos. Hybrid Mat., 2019, 2, 34-45.
[http://dx.doi.org/10.1007/s42114-018-0073-y]
[18]
Mohammed, N.; Grishkewich, N.; Tam, K.C. Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano, 2018, 5, 623-658.
[http://dx.doi.org/10.1039/C7EN01029J]
[19]
Hashem, T.; Ibrahim, A.H.; Wöll, C.; Alkordi, M.H. Grafting Zirconium-Based Metal–Organic Framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(VI) Ions and Methyl orange from water. ACS Appl. Nano Mat., 2019, 2, 5804-5808.
[http://dx.doi.org/10.1021/acsanm.9b01263]
[20]
Zhang, Q.; Zhang, L.; Wu, W.; Xiao, H. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydr. Polym., 2019, 115454.
[21]
Abdul Khalil, H.P.S.; Chong, E.W.N.; Owolabi, F.A.T.; Asniza, M.; Tye, Y.Y.; Rizal, S.; Nurul Fazita, M.R.; Mohamad Haafiz, M.K.; Nurmiati, Z.; Paridah, M.T. Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: A review. J. Appl. Polym. Sci., 2019, 136, 47251.
[http://dx.doi.org/10.1002/app.47251]
[22]
Meng, D.; Fan, J.; Ma, J.; Du, S-W.; Geng, J. The preparation and functional applications of carbon nanomaterial/conjugated polymer composites. J. Compos. Commun., 2019, 12, 64-73.
[http://dx.doi.org/10.1016/j.coco.2018.12.009]
[23]
Ge, J.; Zhang, Y.; Heo, Y.J.; Park, S.J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. J Catalysts., 2019, 9, 122.
[http://dx.doi.org/10.3390/catal9020122]
[24]
Moustafa, H.; Youssef, A.M.; Darwish, N.A.; Abou Kandil, A.I. Eco-friendly polymer composites for green packaging: Future vision and challenges. J. Compos. Part B: Eng., 2019.
[25]
Mohanty, A.K.; Misra, M.; Drzal, L.T. Natural fibers, biopolymers, and biocomposites; CRC press, 2005.
[http://dx.doi.org/10.1201/9780203508206]
[26]
Mohammadzadeh Pakdel, P.; Peighambardoust, S.J. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym., 2018, 201, 264-279.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.070]
[27]
Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. J. Rev. Environ. Health, 2019, 34, 171-186.
[http://dx.doi.org/10.1515/reveh-2018-0078]
[28]
Patnaik, R. Impact of industrialization on environment and sustainable solutions – reflections from a south indian region. IOP Conference Series: Earth and Environmental Science, 2018.
[http://dx.doi.org/10.1088/1755-1315/120/1/012016]
[29]
Edwards, J.D. Industrial Wastewater Treatment; CRC press, 2019.
[http://dx.doi.org/10.1201/9781351073509]
[30]
Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett., 2019, 17, 195-213.
[http://dx.doi.org/10.1007/s10311-018-0786-8]
[31]
Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., 2019, 17, 145-155.
[http://dx.doi.org/10.1007/s10311-018-0785-9]
[32]
Gitis, V.; Hankins, N. Water treatment chemicals: Trends and challenges. J. Water Process Eng., 2018, 25, 34-38.
[http://dx.doi.org/10.1016/j.jwpe.2018.06.003]
[33]
Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ., 2019, 663, 568-579.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.347]
[34]
Das, S.; Lee, S.H.; Kumar, P.; Kim, K.H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod., 2019, 228, 658-678.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.323]
[35]
Varghese, A.G.; Paul, S.A.; Latha, M.S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett., 2019, 17, 867-877.
[http://dx.doi.org/10.1007/s10311-018-00843-z]
[36]
Lapo, B.; Demey, H.; Carchi, T.; Sastre, A.M. Antimony removal from water by a chitosan-Iron (III)[ChiFer (III)] biocomposite. J. Polym., 2019, 11, 351.
[37]
Kasiri, M.B. Application of chitosan derivatives as promising adsorbents for treatment of textile wastewater.The Impact and Prospects of Green Chemistry for Textile Technology, Shahid ul, I; Butola, B.S., Ed.; Woodhead Publishing, 2019, pp. 417-469.
[http://dx.doi.org/10.1016/B978-0-08-102491-1.00014-9]
[38]
Brigham, C. Biopolymers: Biodegradable Alternatives to Traditional Plastics. Green Chemistry;; Török, B.; Dransfield, T., Eds.; Elsevier, 2018, pp. 753-770.
[http://dx.doi.org/10.1016/B978-0-12-809270-5.00027-3]
[39]
Mohanty, A.K.; Vivekanandhan, S.; Pin, J.M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Sci. J. Am. Assoc. Adv. Sci., 2018, 362, 536-542.
[40]
Jumaidin, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Seaweeds as renewable sources for biopolymers and its composites: A review. Curr. Anal. Chem., 2018, 14, 249-267.
[http://dx.doi.org/10.2174/1573411013666171009164355]
[41]
Ortelli, S.; Costa, A.L.; Torri, C.; Samorì, C.; Galletti, P.; Vineis, C.; Varesano, A.; Bonura, L.; Bianchi, G. Innovative and sustainable production of biopolymers. Factories of the Future: The Italian Flagship Initiative; Tolio, T.;; Copani, G.; Terkaj, W., Eds.; Springer International Publishing: Cham, 2019, pp. 131-148.
[http://dx.doi.org/10.1007/978-3-319-94358-9_6]
[42]
Gunatilake, S. Methods of removing heavy metals from industrial wastewater. J Methods., 2015, 1, 14.
[43]
Murawski, A.; Diaz, R.; Inglesby, S.; Delabar, K.; Quirino, R.L. Synthesis of bio-based polymer composites: Fabrication, fillers, properties, and challenges. Polymer Nanocomposites in Biomedical Engineering; Sadasivuni, K.K.; Ponnamma, D.; Rajan, M.; Ahmed, B.; Al-Maadeed, M.A.S.A., Eds.; Springer International Publishing: Cham, 2019, pp. 29-55.
[http://dx.doi.org/10.1007/978-3-030-04741-2_2]
[44]
Jang, W. Situ Formation of Gold Nanoparticles within a Polymer Particle and Their Catalytic Activities in Various Chemical Reactions, 2019, 20, pp. 70-77.
[45]
Farahbakhsh, J.; Delnavaz, M.; Vatanpour, V. Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks. J. Membr. Sci., 2019, 581, 123-138.
[http://dx.doi.org/10.1016/j.memsci.2019.03.050]
[46]
Tamayo, L.; Palza, H.; Bejarano, J.; Zapata, P.A. Polymer composites with metal nanoparticles: synthesis, properties, and applications. Polymer Composites with Functionalized Nanoparticles;; Pielichowski, K.; Majka, T.M., Eds.; Elsevier, 2019, pp. 249-286.
[http://dx.doi.org/10.1016/B978-0-12-814064-2.00008-1]
[47]
Wu, A.; Jia, J.; Luan, S. Amphiphilic PMMA/PEI core–shell nanoparticles as polymeric adsorbents to remove heavy metal pollutants. J. Colloids Surf. A Physicochem. Eng. Asp., 2011, 384, 180-185.
[http://dx.doi.org/10.1016/j.colsurfa.2011.03.060]
[48]
Bhaumik, M.; Choi, H.J.; McCrindle, R.I.; Maity, A. Composite nanofibers prepared from metallic iron nanoparticles and polyaniline: high performance for water treatment applications. J. Colloid Interface Sci., 2014, 425, 75-82.
[http://dx.doi.org/10.1016/j.jcis.2014.03.031]
[49]
Cai, G.B.; Zhao, G.X.; Wang, X.K.; Yu, S.H. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C, 2010, 114, 12948-12954.
[http://dx.doi.org/10.1021/jp103464p]
[50]
Ghorai, S.; Sarkar, A.; Raoufi, M.; Panda, A.B.; Schönherr, H.; Pal, S. Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl. Mater. Interfaces, 2014, 6, 4766-4777.
[http://dx.doi.org/10.1021/am4055657]
[51]
Venkateswarlu, S.; Yoon, M. Core–shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@ DAPF) for fast removal of Pb (II) from aqueous solutions. J. ACS Appl. Mater. Interfaces, 2015, 7, 25362-25372.
[http://dx.doi.org/10.1021/acsami.5b07723]
[52]
Zhang, Q.; Pan, B.; Zhang, S.; Wang, J.; Zhang, W.; Lv, L. New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. J. Nanopart. Res., 2011, 13, 5355.
[http://dx.doi.org/10.1007/s11051-011-0521-x]
[53]
Shao, D.; Hu, J.; Chen, C.; Sheng, G.; Ren, X.; Wang, X. Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and its application for removal of aniline and phenol. J. Phys. Chem. C, 2010, 114, 21524-21530.
[http://dx.doi.org/10.1021/jp107492g]
[54]
Anirudhan, T.; Ramachandran, M. Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu (II), Zn (II), and Cd (II) adsorption from aqueous solutions and industry wastewaters. J. Indus. Eng. Chem. Res., 2008, 47, 6175-6184.
[http://dx.doi.org/10.1021/ie070735d]
[55]
Wang, L.; Wu, X.L.; Xu, W.H.; Huang, X.J.; Liu, J.H.; Xu, A.W. Stable organic–inorganic hybrid of polyaniline/α-zirconium phosphate for efficient removal of organic pollutants in water environment. ACS Appl. Mater. Interfaces, 2012, 4, 2686-2692.
[http://dx.doi.org/10.1021/am300335e]
[56]
Saleh, T.A.; Sarı, A.; Tuzen, M. Effective adsorption of antimony (III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. J. Chem. Eng. of Jpn, 2017, 307, 230-238.
[http://dx.doi.org/10.1016/j.cej.2016.08.070]
[57]
Liu, Y.; Wang, A.; Claus, R. Molecular self-assembly of TiO2/polymer nanocomposite films. J. Phys. Chem. B, 1997, 101, 1385-1388.
[http://dx.doi.org/10.1021/jp962591e]
[58]
Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N. Fabrication, characterization and antimicrobial activity of polyaniline Th (IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. J. Chem. Eng. of Jpn, 2014, 251, 413-421.
[http://dx.doi.org/10.1016/j.cej.2014.04.074]
[59]
Yu, Q.; Wu, P.; Xu, P.; Li, L.; Liu, T.; Zhao, L. Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. J. Green Chem., 2008, 10, 1061-1067.
[http://dx.doi.org/10.1039/b806094k]
[60]
Kumar, A.; Sharma, G.; Naushad, M.; Thakur, S. SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water. J. Chem. Eng. Jpn, 2015, 280, 175-187.
[http://dx.doi.org/10.1016/j.cej.2015.05.126]
[61]
Kickelbick, G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. J. Prog. Polym. Sci., 2003, 28, 83-114.
[http://dx.doi.org/10.1016/S0079-6700(02)00019-9]
[62]
Frisch, H.L.; Xue, Y.p.; Maaref, S.; Beaucage, G.; Pu, Z.; Mark, J.E. Pseudo interpenetrating polymer networks and interpenetrating polymer networks of zeolite 13 X and polystyrene and poly (ethyl acrylate), Macromolecular Symposia; Wiley Online Library, 1996, pp. 147-166.
[63]
Wen, X.F.; Wang, K.; Pi, P.H.; Yang, J.X.; Cai, Z.Q.; Zhang, L.j.; Qian, Y.; Yang, Z.R.; Zheng, D.f.; Cheng, J. Organic–inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol-gel derived materials in emulsion. J. Appl. Surf. Sci., 2011, 258, 991-998.
[http://dx.doi.org/10.1016/j.apsusc.2011.06.085]
[64]
Ogoshi, T.; Chujo, Y. Organic–inorganic polymer hybrids prepared by the sol-gel method. J. Compos. Interf., 2005, 11, 539-566.
[http://dx.doi.org/10.1163/1568554053148735]
[65]
Hajji, P.; David, L.; Gerard, J.; Kaddami, H.; Pascault, J.; Vigier, G. Synthesis morphology mechanical properties relationships of polymer-silica nanocomposite hybrid materials. J MRS Online Proceedings Library Archive, 1999, 576.
[66]
Chiou, M.S.; Ho, P.Y.; Li, H.Y. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. J. Dyes Pigments, 2004, 60, 69-84.
[http://dx.doi.org/10.1016/S0143-7208(03)00140-2]
[67]
Crini, G.; Badot, P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. J. Prog. Polym. Sci., 2008, 33, 399-447.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001]
[68]
Crini, G. Historical review on chitin and chitosan biopolymers. Environ. Chem. Lett., 2019.
[http://dx.doi.org/10.1007/s10311-019-00901-0]
[69]
Labidi, A.; Salaberria, A.M.; Fernandes, S.C.M.; Labidi, J.; Abderrabba, M. Microwave assisted synthesis of poly (N-vinylimidazole) grafted chitosan as an effective adsorbent for mercury (II) removal from aqueous solution: Equilibrium, kinetic, thermodynamics and regeneration studies. J. Dispers. Sci. Technol., 2019, 1-13.
[http://dx.doi.org/10.1080/01932691.2019.1614025]
[70]
Zuo, X. Preparation and evaluation of novel thiourea/chitosan composite beads for copper (II) removal in aqueous solutions. J. Indus. Eng. Chem. Res., 2014, 53, 1249-1255.
[http://dx.doi.org/10.1021/ie4036059]
[71]
Zhang, L.; Zeng, Y.; Cheng, Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J. Mol. Liq., 2016, 214, 175-191.
[http://dx.doi.org/10.1016/j.molliq.2015.12.013]
[72]
Hastuti, B.; Siswanta, D. The synthesis of carboxymethyl chitosan-pectin film as adsorbent for lead (II) metal. J. Int. J. Chem. Eng. Appl., 2013, 4, 349-353.
[http://dx.doi.org/10.7763/IJCEA.2013.V4.323]
[73]
Peter, M.; Gopalakrishnan, S.; Kannadasan, T. Adsorption of Copper by Ethylenediamine-modified cross-linked magnetic chitosan resin (EMCMCR). J. Am. J. Eng. Res., 2013, 5, 114-121.
[74]
Thilagan, J.; Gopalakrishnan, S.; Kannadasan, T. A comparative study on adsorption of copper (ii) ions in aqueous solution by;(a) chitosan blended with cellulose and cross linked by formaldehyde,(b) chitosan immobilised on red soil,(c) chitosan reinforced by banana stem fibre. J Int. J. Appl. Eng. Technol., 2013, 3, 35-60.
[75]
Soundarrajan, M.; Gomathi, T.; Sudha, P. Understanding the adsorption efficiency of chitosan coated carbon on heavy metal removal. J. Int. J. Sci. Res. Publ., 2013, 3, 1-10.
[76]
Zhang, Y.J.; Xue, J.Q.; Li, F.; Dai, J.I.Z.; Zhang, X-Z.Y. Preparation of polypyrrole/chitosan/carbon nanotube composite nano-electrode and application to capacitive deionization process for removing Cu2+. Chem. Eng. Process. Process Intensif., 2019, 139, 121-129.
[77]
Ngah, W.W.; Teong, L.; Toh, R.; Hanafiah, M. Utilization of chitosan–zeolite composite in the removal of Cu (II) from aqueous solution: adsorption, desorption and fixed bed column studies. J. Chem. Eng. of Jpn, 2012, 209, 46-53.
[http://dx.doi.org/10.1016/j.cej.2012.07.116]
[78]
Truong, T.T.C.; Takaomi, K.; Bui, H.M. Chitosan/zeolite composite membranes for the elimination of trace metal ions in the evacuation permeability process. J. Serb. Chem. Soc., 2019, 84, 83-97.
[http://dx.doi.org/10.2298/JSC180606085T]
[79]
Reiad, N.A.; Abdelsalam, O.E.; Abadir, E.F.; Harraz, F.A. Preparation, Characterization and Application of Chitosan/Polyethylene glycol blend film for removal of iron from water. J. Int. J. Sustain. Water Env. Syst., 2013, 5, 43-49.
[80]
Wang, W.B.; Huang, D.J.; Kang, Y.R.; Wang, A.Q. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. J. Colloids Surf. B Biointerfaces, 2013, 106, 51-59.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.030]
[81]
Shanmugapriya, A.; Hemalatha, M.; Scholastica, B.; Augustine, T. Adsorption studies of lead (II) and nickel (II) ions on chitosan-G-polyacrylonitrile. J. Der Pharma Chemica., 2013, 5, 141-155.
[82]
Hritcu, D.; Dodi, G.; Popa, M.I. Heavy metal ions adsorption on chitosan-magnetite microspheres. J. Int. Rev. Chem. Eng., 2012, 4, 364-368.
[83]
Benavente, M.; Moreno, L.; Martinez, J. Sorption of heavy metals from gold mining wastewater using chitosan. J. Taiwan Inst. Chem. Eng., 2011, 42, 976-988.
[http://dx.doi.org/10.1016/j.jtice.2011.05.003]
[84]
Repo, E.; Warchoł, J.K.; Bhatnagar, A.; Sillanpää, M. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J. Colloid Interface Sci., 2011, 358, 261-267.
[http://dx.doi.org/10.1016/j.jcis.2011.02.059]
[85]
Fan, D.; Zhu, X.; Xu, M.; Yan, J. Adsorption properties of chromium (VI) by chitosan coated montmorillonite. Jordan J. Biol. Sci., 2006, 6, 941-945.
[86]
Bleiman, N.; Mishael, Y.G. Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: batch and columns tests. J. Hazard. Mat., 2010, 183, 590-595.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.065]
[87]
Larraza, I.; Lopez Gonzalez, M.; Corrales, T.; Marcelo, G. Hybrid materials: magnetite–polyethylenimine–montmorillonite, as magnetic adsorbents for Cr (VI) water treatment. J. Colloid Interface Sci., 2012, 385, 24-33.
[http://dx.doi.org/10.1016/j.jcis.2012.06.050]
[88]
Hasan, S.; Ghosh, T.K.; Viswanath, D.S.; Boddu, V.M. Dispersion of chitosan on perlite for enhancement of copper (II) adsorption capacity. J. Hazard. Mat., 2008, 152, 826-837.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.078]
[89]
Hasan, S.; Krishnaiah, A.; Ghosh, T.K.; Viswanath, D.S.; Boddu, V.M.; Smith, E.D. Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads. J. Ind. Eng. Chem. Res., 2006, 45, 5066-5077.
[http://dx.doi.org/10.1021/ie0402620]
[90]
Kalyani, S.; Priya, J.A.; Rao, P.S.; Krishnaiah, A. Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. J. Sep. Sci. Technol., 2005, 40, 1483-1495.
[http://dx.doi.org/10.1081/SS-200055940]
[91]
Pandey, S.; Mishra, S.B. Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J. Colloid Interface Sci., 2011, 361, 509-520.
[http://dx.doi.org/10.1016/j.jcis.2011.05.031]
[92]
Shanmugapriya, A.; Ramya, R.; Ramasubramaniam, S.; Sudha, P. Studies on removal of Cr (VI) and Cu (II) ions using chitosan grafted-polyacrylonitrile. J. Arch. Appl. Sci. Res., 2011, 3, 424-435.
[93]
Wang, L.; Xing, R.; Liu, S.; Cai, S.; Yu, H.; Feng, J.; Li, R.; Li, P. Synthesis and evaluation of a thiourea-modified chitosan derivative applied for adsorption of Hg (II) from synthetic wastewater. J. Int. J. Biol. Macromol., 2010, 46, 524-528.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.03.003]
[94]
Li, H.; Huang, D. Microwave preparation and copper ions adsorption properties of crosslinked chitosan/ZSM molecular sieve composites. J. Appl. Polym. Sci., 2013, 129, 86-93.
[http://dx.doi.org/10.1002/app.38697]
[95]
Qin, Y.; Cai, L.; Feng, D.; Shi, B.; Liu, J.; Zhang, W.; Shen, Y. Combined use of chitosan and alginate in the treatment of wastewater. J. Appl. Polym. Sci., 2007, 104, 3581-3587.
[http://dx.doi.org/10.1002/app.26006]
[96]
Zhang, C.; Zhang, M.; Chang, Q. Preparation of mercaptoacetyl chitosan and its removal performance of copper ion and turbidity. Desalination Water Treat., 2013, 53, 1-8.
[http://dx.doi.org/10.1080/19443994.2013.848415]
[97]
Shanmugapriya, A.; Ramammurthy, R.; Munusamy, V. Optimization of Ceric Ammonium Nitrate Initiated Graft Copolymerization of Acrylonitrile onto Chitosan. J. Water Res. Protect., 2011, 2011, 3.
[98]
Ramnani, S.P.; Sabharwal, S. Adsorption behavior of Cr(VI) onto radiation crosslinked chitosan and its possible application for the treatment of wastewater containing Cr(VI). React. Funct. Polym., 2006, 66, 902-909.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2005.11.017]
[99]
Benavente, M.; Moreno, L.; Martínez, J. Sorption of heavy metal from gold mining wastewater using chitosan. J. Taiwan Inst. Chem. Eng., 2011, 42, 976-988.
[http://dx.doi.org/10.1016/j.jtice.2011.05.003]
[100]
Soundarrajan, M.; Gomathi, T.P.N. S. Understanding the Adsorption Efficiency of Chitosan Coated Carbon on Heavy Metal Removal. Int. J. Sci. Res. Publ., 2013, 2013, 3.
[101]
Thilagan, J.; Gopalakrishnan, S.; Kannadasan, T. Thermodynamic study on adsorption of Copper (II) ions in aqueous solution by Chitosan blended with Cellulose & cross linked by Formaldehyde, Chitosan immobilised on Red Soil, Chitosan reinforced by Banana stem fibre.J. Int. J. Sci. Res. Eng. Technol; , 2013, 2013, p. 2.
[102]
Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater. Sci. Eng. C, 2010, 30, 304-310.
[http://dx.doi.org/10.1016/j.msec.2009.11.008]
[103]
Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. J. Water Res., 2008, 42, 633-642.
[http://dx.doi.org/10.1016/j.watres.2007.08.014]
[104]
Boddu, V.M.; Abburi, K.; Randolph, A.J.; Smith, E.D. Removal of copper (II) and nickel (II) ions from aqueous solutions by a composite chitosan biosorbent. J. Sep. Sci. Technol., 2008, 43, 1365-1381.
[http://dx.doi.org/10.1080/01496390801940762]
[105]
Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. J. Environ. Sci. Technol., 2003, 37, 4449-4456.
[http://dx.doi.org/10.1021/es021013a]
[106]
Ngah, W.S.; Fatinathan, S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem. Eng. J., 2008, 143, 62-72.
[http://dx.doi.org/10.1016/j.cej.2007.12.006]
[107]
Vijaya, Y.; Popuri, S.R.; Boddu, V.M.; Krishnaiah, A. Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. J. Carbohydr. Polym., 2008, 72, 261-271.
[http://dx.doi.org/10.1016/j.carbpol.2007.08.010]
[108]
Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. J. Bioresour. Technol., 2009, 100, 194-199.
[http://dx.doi.org/10.1016/j.biortech.2008.05.041]
[109]
Kumar, M.; Tripathi, B.P.; Shahi, V.K. Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd (II) from wastewater. J. Hazard. Mat., 2009, 172, 1041-1048.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.108]
[110]
Ngah, W.W.; Kamari, A.; Koay, Y. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. J. Int. J. Biol. Macromol., 2004, 34, 155-161.
[http://dx.doi.org/10.1016/j.ijbiomac.2004.03.001]
[111]
Wan, M.W.; Kan, C.C.; Lin, C.H.; Buenda, D.; Wu, C.H. Adsorption of copper (II) by chitosan immobilized on sand. J. Chia-Nan Annual Bulletin., 2007, 33, 96-106.
[112]
Wan, M.W.; Kan, C.C.; Rogel, B.D.; Dalida, M.L.P. Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. J. Carbohydrate Polymers., 2010, 80, 891-899.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.048]
[113]
Dinu, M.V.; Dragan, E.S. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms. J. Chem. Eng. of Jpn, 2010, 160, 157-163.
[http://dx.doi.org/10.1016/j.cej.2010.03.029]
[114]
Kousalya, G.; Gandhi, M.R.; Sundaram, C.S.; Meenakshi, S. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe (III). J. Carbohydr. Polym., 2010, 82, 594-599.
[http://dx.doi.org/10.1016/j.carbpol.2010.05.013]
[115]
Fox, S.C.; Li, B.; Xu, D.; Edgar, K.J. Regioselective esterification and etherification of cellulose: A review. J Biomacromolecules., 2011, 12, 1956-1972.
[http://dx.doi.org/10.1021/bm200260d]
[116]
Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. J. Macromol. Biosci., 2007, 7, 804-809.
[http://dx.doi.org/10.1002/mabi.200700007]
[117]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. J. Angew. Chem. Int. Ed., 2005, 44, 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587]
[118]
Abouzeid, R.E.; Khiari, R.; El Wakil, N.; Dufresne, A. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules, 2019, 20, 573-597.
[http://dx.doi.org/10.1021/acs.biomac.8b00839]
[119]
Varghese, A.G.; Paul, S.A.; Latha, M.S. Cellulose Based Green Adsorbents for Pollutant Removal from Wastewater. Green Adsorbents for Pollutant Removal: Innovative materials; Crini, G; Lichtfouse, E., Ed.; Springer International Publishing: Cham, 2018, pp. 127-157.
[http://dx.doi.org/10.1007/978-3-319-92162-4_4]
[120]
Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci., 2019, 88, 241-264.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.09.002]
[121]
Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. J. Water Res., 2016, 91, 156-173.
[http://dx.doi.org/10.1016/j.watres.2016.01.008]
[122]
Zhou, L.; He, H.; Li, M.C.; Huang, S.; Mei, C.; Wu, Q. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property. Carbohydr. Polym., 2018, 189, 331-341.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.039]
[123]
Ni, X.; Cheng, W.; Huan, S.; Wang, D.; Han, G. Electrospun cellulose nanocrystals/poly(methyl methacrylate) composite nanofibers: Morphology, thermal and mechanical properties. Carbohydr. Polym., 2019, 206, 29-37.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.103]
[124]
O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. J. Bioresour. Technol., 2008, 99, 6709-6724.
[http://dx.doi.org/10.1016/j.biortech.2008.01.036]
[125]
Bendjeffal, H.; Djebli, A.; Mamine, H.; Metidji, T.; Dahak, M.; Rebbani, N.; Bouhedja, Y. Effect of the chelating agents on bio-sorption of hexavalent chromium using Agave sisalana fibers. Chin. J. Chem. Eng., 2018, 26, 984-992.
[http://dx.doi.org/10.1016/j.cjche.2017.10.016]
[126]
Lomelí Ramírez, M.G.; Valdez Fausto, E.M.; Rentería Urquiza, M.; Jiménez Amezcua, R.M.; Anzaldo Hernández, J.; Torres Rendon, J.G.; García Enriquez, S. Study of green nanocomposites based on corn starch and cellulose nanofibrils from Agave tequilana Weber. Carbohydr. Polym., 2018, 201, 9-19.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.045]
[127]
Hajeeth, T.; Sudha, P.; Vijayalakshmi, K.; Gomathi, T. Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer. J. Int. J. Biol. Macromol., 2014, 66, 295-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.027]
[128]
Hokkanen, S.; Repo, E.; Suopajärvi, T.; Liimatainen, H.; Niinimaa, J.; Sillanpaa, M. Adsorption of Ni (II), Cu (II) and Cd (II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. J. Cellulose., 2014, 21, 1471-1487.
[http://dx.doi.org/10.1007/s10570-014-0240-4]
[129]
Sokker, H.; Gad, Y.; Ismail, S. Synthesis of bifunctional cellulosic adsorbent by radiation induced graft polymerization of glycidyl methacrylate‐co‐methacrylic acids. J. Appl. Polym. Sci., 2012, 126, E54-E62.
[http://dx.doi.org/10.1002/app.34220]
[130]
Tang, Y.; Ma, Q.; Luo, Y.; Zhai, L.; Che, Y.; Meng, F. Improved synthesis of a branched poly (ethylene imine)‐modified cellulose‐based adsorbent for removal and recovery of Cu (II) from aqueous solution. J. Appl. Polym. Sci., 2013, 129, 1799-1805.
[http://dx.doi.org/10.1002/app.38878]
[131]
Liu, J.; Xie, T.H.; Deng, C.; Du, K.F.; Zhang, N.; Yu, J.J.; Zou, Y.L.; Zhang, Y.K. Welan gum-modified cellulose bead as an effective adsorbent of heavy metal ions (Pb2+, Cu2+, and Cd2+) in aqueous solution. J. Sep. Sci. Technol., 2014, 49, 1096-1103.
[http://dx.doi.org/10.1080/01496395.2013.872658]
[132]
Taha, A.A.; Wu, Y.n.; Wang, H.; Li, F. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from aqueous solution. J. Environ. Manage., 2012, 112, 10-16.
[http://dx.doi.org/10.1016/j.jenvman.2012.05.031]
[133]
Kumari, S.; Chauhan, G.S. New cellulose–lysine schiff-base-based sensor–adsorbent for mercury ions. ACS Appl. Mater. Interfaces, 2014, 6, 5908-5917.
[http://dx.doi.org/10.1021/am500820n]
[134]
Zhou, Y.; Fu, S.; Zhang, L.; Zhan, H.; Levit, M.V. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). J. Carbohydr. Polym., 2014, 101, 75-82.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.055]
[135]
Kadry, G.; Aboelmagd, E.I.; Ibrahim, M.M. Cellulosic-based hydrogel from biomass material for removal of metals from waste water. J. Macromol. Sci. Part A., 2019, 56, 968-981.
[http://dx.doi.org/10.1080/10601325.2019.1640063]
[136]
Yu, X.; Tong, S.; Ge, M.; Wu, L.; Zuo, J.; Cao, C.; Song, W. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J. Environ. Sci., 2013, 25, 933-943.
[http://dx.doi.org/10.1016/S1001-0742(12)60145-4]
[137]
Anirudhan, T.S.; Divya, L.; Parvathy, J. Arsenic adsorption from contaminated water on Fe (III)‐coordinated amino‐functionalized poly (glycidylmethacrylate)‐grafted TiO2‐densified cellulose. J. Chem. Technol. Biotechnol., 2013, 88, 878-886.
[http://dx.doi.org/10.1002/jctb.3916]
[138]
Peng, S.; Meng, H.; Ouyang, Y.; Chang, J. Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu (II) adsorption. J. Ind. Eng. Chem. Res., 2014, 53, 2106-2113.
[http://dx.doi.org/10.1021/ie402855t]
[139]
Ji, F.; Li, C.; Xu, J.; Liu, P. Dynamic adsorption of Cu (II) from aqueous solution by zeolite/cellulose acetate blend fiber in fixed-bed. J. Colloids Surf. A Physicochem. Eng. Asp., 2013, 434, 88-94.
[http://dx.doi.org/10.1016/j.colsurfa.2013.05.045]
[140]
Krstić, V.; Urošević, T.; Pešovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci., 2018, 192, 273-287.
[http://dx.doi.org/10.1016/j.ces.2018.07.022]
[141]
Khan, S.B.; Alamry, K.A.; Marwani, H.M.; Asiri, A.M.; Rahman, M.M. Synthesis and environmental applications of cellulose/ZrO2 nanohybrid as a selective adsorbent for nickel ion. J. Composites Part B: Engineering., 2013, 50, 253-258.
[http://dx.doi.org/10.1016/j.compositesb.2013.02.009]
[142]
Ekebafe, L.; Ekebafe, M.; Erhuaga, G.; Oboigba, F. Effect of reaction conditions on the uptake of selected heavy metals from aqueous media using composite from renewable materials. J. Am. J. Polym. Sci., 2012, 2, 67-72.
[143]
Gurgel, L.V.A.; Junior, O.K.; de Freitas Gil, R.P.; Gil, L.F. Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. J. Biores. Technol., 2008, 99, 3077-3083.
[http://dx.doi.org/10.1016/j.biortech.2007.05.072]
[144]
Zhou, Y.; Jin, Q.; Hu, X.; Zhang, Q.; Ma, T. Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride. J. Mat. Sci., 2012, 47, 5019-5029.
[http://dx.doi.org/10.1007/s10853-012-6378-2]
[145]
Wang, J.; Wei, L.; Ma, Y.; Li, K.; Li, M.; Yu, Y.; Wang, L.; Qiu, H. Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu (II) adsorption. J. Carbohydr. Polym., 2013, 98, 736-743.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.001]
[146]
Li, R.; Liu, L.; Yang, F. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg (II). J. Chem. Eng., 2013, 229, 460-468.
[http://dx.doi.org/10.1016/j.cej.2013.05.089]
[147]
Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of reduced graphene oxide/poly (acrylamide) nanocomposite and its adsorption of Pb (II) and methylene blue. J Langmuir., 2013, 29, 10727-10736.
[http://dx.doi.org/10.1021/la401940z]
[148]
Wu, S.; Li, F.; Wang, H.; Fu, L.; Zhang, B.; Li, G. Effects of poly (vinyl alcohol)(PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. J. Polym., 2010, 51, 6203-6211.
[http://dx.doi.org/10.1016/j.polymer.2010.10.015]
[149]
Liu, Y.; Liu, Z.; Gao, J.; Dai, J.; Han, J.; Wang, Y.; Xie, J.; Yan, Y. Selective adsorption behavior of Pb (II) by mesoporous silica SBA-15-supported Pb (II)-imprinted polymer based on surface molecularly imprinting technique. J. Hazard. Mater., 2011, 186, 197-205.
[http://dx.doi.org/10.1016/j.jhazmat.2010.10.105]
[150]
Naushad, M.; Ahamad, T.; Sharma, G.; Ala’a, H.; Albadarin, A.B.; Alam, M.M. ALOthman, Z.A.; Alshehri, S.M.; Ghfar, A.A. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. J. Chem. Eng. of Jpn, 2016, 300, 306-316.
[http://dx.doi.org/10.1016/j.cej.2016.04.084]
[151]
Javadian, H. Application of kinetic, isotherm and thermodynamic models for the adsorption of Co (II) ions on polyaniline/polypyrrole copolymer nanofibers from aqueous solution. J. J. Ind. Eng. Chem., 2014, 20, 4233-4241.
[http://dx.doi.org/10.1016/j.jiec.2014.01.026]
[152]
Checkol, F.; Elfwing, A.; Greczynski, G.; Mehretie, S.; Inganäs, O.; Admassie, S. Highly Stable and Efficient Lignin‐PEDOT/PSS composites for removal of toxic metals. J Adv. Sustain. Systems., 2018, 2, 1700114.
[http://dx.doi.org/10.1002/adsu.201700114]
[153]
Nyairo, W.N.; Eker, Y.R.; Kowenje, C.; Akin, I.; Bingol, H.; Tor, A.; Ongeri, D.M. Efficient adsorption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. J. Sep. Sci. Technol., 2018, 53, 1498-1510.
[http://dx.doi.org/10.1080/01496395.2018.1424203]
[154]
Ghoul, M.; Bacquet, M.; Morcellet, M. Uptake of heavy metals from synthetic aqueous solutions using modified PEI-silica gels. J Water Res., 2003, 37, 729-734.
[http://dx.doi.org/10.1016/S0043-1354(02)00410-4]
[155]
Pan, B.; Pan, B.; Chen, X.; Zhang, W.; Zhang, X.; Zhang, Q.; Zhang, Q.; Chen, J. Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. J. Water Res., 2006, 40, 2938-2946.
[http://dx.doi.org/10.1016/j.watres.2006.05.028]
[156]
Kumar, A.S.K.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater. J. Ind. Eng. Chem. Res., 2011, 51, 58-69.
[http://dx.doi.org/10.1021/ie201349h]
[157]
Setshedi, K.Z.; Bhaumik, M.; Songwane, S.; Onyango, M.S.; Maity, A. Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr (VI) removal. J. Chem. Eng. J., 2013, 222, 186-197.
[http://dx.doi.org/10.1016/j.cej.2013.02.061]
[158]
Fallah, Z.; Isfahani, H.N.; Tajbakhsh, M.; Tashakkorian, H.; Amouei, A. TiO 2-grafted cellulose via click reaction: an efficient heavy metal ions bioadsorbent from aqueous solutions. J. Cellulose., 2018, 25, 639-660.
[http://dx.doi.org/10.1007/s10570-017-1563-8]
[159]
Zhao, X.; Dou, X.; Mohan, D.; Pittman, C.U., Jr; Ok, Y.S.; Jin, X. Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron. J. Chem. Eng. Jpn, 2014, 247, 250-257.
[http://dx.doi.org/10.1016/j.cej.2014.02.096]
[160]
Bhaumik, M.; Maity, A.; Srinivasu, V.; Onyango, M.S. Enhanced removal of Cr (VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J. Hazard. Mat., 2011, 190, 381-390.
[http://dx.doi.org/10.1016/j.jhazmat.2011.03.062]
[161]
Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Metal–organic frameworks supported on nanofibers to remove heavy metals. J. Mat. Chem. A, 2018, 6, 4550-4555.
[http://dx.doi.org/10.1039/C7TA10428F]
[162]
Memon, S.Q.; Memon, N.; Shah, S.; Khuhawar, M.; Bhanger, M. Sawdust—A green and economical sorbent for the removal of cadmium (II) ions. J. Hazard. Mat., 2007, 139, 116-121.
[http://dx.doi.org/10.1016/j.jhazmat.2006.06.013]
[163]
Zhou, L.; Wang, Y.; Liu, Z.; Huang, Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheres. J. J. Hazard. Mater., 2009, 161, 995-1002.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.078]
[164]
Monier, M.; Abdel Latif, D. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg (II), Cd (II) and Zn (II) ions from aqueous solutions. J. Hazard. Mater., 2012, 209, 240-249.
[http://dx.doi.org/10.1016/j.jhazmat.2012.01.015]
[165]
Reddy, D.H.K.; Lee, S.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. J. Adv. Colloid Interf. Sci., 2013, 201, 68-93.
[http://dx.doi.org/10.1016/j.cis.2013.10.002]
[166]
Chen, Y.; Wang, J. Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. J. Nuclear Eng. Design., 2012, 242, 445-451.
[http://dx.doi.org/10.1016/j.nucengdes.2011.10.059]
[167]
Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr (VI) removal. J. Chem. Eng. of Jpn, 2015, 262, 597-606.
[http://dx.doi.org/10.1016/j.cej.2014.10.020]
[168]
Yuwei, C.; Jianlong, W. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal. J. Chem. Eng. of Jpn, 2011, 168, 286-292.
[http://dx.doi.org/10.1016/j.cej.2011.01.006]
[169]
Sun, Y.; Lu, S.; Wang, X.; Xu, C.; Li, J.; Chen, C.; Chen, J.; Hayat, T.; Alsaedi, A.; Alharbi, N.S. Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of 238U (VI) and 241Am (III). J. Environ. Sci. Technol., 2017, 51, 12274-12282.
[http://dx.doi.org/10.1021/acs.est.7b02745]
[170]
Thines, K.R.; Abdullah, E.C.; Mubarak, N.M.; Ruthiraan, M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review. Renew. Sustain. Energy Rev., 2017, 67, 257-276.
[http://dx.doi.org/10.1016/j.rser.2016.09.057]
[171]
Tarrés, Q.; Deltell, A.; Espinach, F.X.; Pèlach, M.À.; Delgado Aguilar, M.; Mutjé, P. Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. Int. J. Biol. Macromol., 2017, 99, 29-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.072]
[172]
Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. J Langmuir., 2008, 25, 3-8.
[http://dx.doi.org/10.1021/la802754t]
[173]
Gupta, A.; Yunus, M.; Sankararamakrishnan, N. Zerovalent iron encapsulated chitosan nanospheres–A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. J. Chemosphere., 2012, 86, 150-155.
[http://dx.doi.org/10.1016/j.chemosphere.2011.10.003]
[174]
Saiz, J.; Bringas, E.; Ortiz, I. Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters. J. Chem. Technol. Biotechnol., 2014, 89, 909-918.
[http://dx.doi.org/10.1002/jctb.4331]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy