Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Pretreatment Techniques for Drug Residues in the Environment before their Quantitation

Author(s): Jingyi Tang, Min Yang and Shun Yao*

Volume 17, Issue 6, 2021

Published on: 16 January, 2020

Page: [768 - 801] Pages: 34

DOI: 10.2174/1573411016666200116092546

Price: $65

Abstract

Background: More and more chemical substances are being released to the environment. Therefore, environmental problems caused by different pollutants have attracted long-term attention.

Objective: Sample pretreatment has always been the bottleneck restricting the development of residual drug analysis, so the latest development in various pretreatment technologies and current status for different residual drugs in environmental samples are reviewed.

Methods: For systematic and explicit descriptions, all of the contents were elucidated and summarized in a series of independent parts. In each part, it started from the research background or a conceptual framework and then specific examples were introduced to illustrate the theme. Finally, the important conclusions were drawn and its future was out looked after the discussion about related key problems appearing in each mentioned research.

Results: The whole review was composed of four parts, and 111 papers were cited in total. Six figures were used to depict progress in potential pretreatment technologies for residual drugs in the environment, and nine tables were employed to summarize pretreatment and analysis results for various residual drugs in the environment.

Conclusion: This review placed emphasis on the development of pretreatment techniques of residual drugs in a specific manner, leading to meaningful and valuable related information to some related fields and thus promoting further research and application of related methods. The deep exploration for key scientific problems is the driving force to their effective detection and strict control.

Keywords: Adsorbents, environment, extraction, membranes, pretreatment, residue drugs.

Graphical Abstract

[1]
Kaczala, F.; Blum, S.E. The occurrence of veterinary pharmaceuticals in the environment: A review. Curr. Anal. Chem., 2016, 12(3), 169-182.
[http://dx.doi.org/10.2174/1573411012666151009193108] [PMID: 28579931]
[2]
Makin, S. Fish flourish on anxiety drug. Nature, 2014.
[http://dx.doi.org/10.1038/nature.2014.15694]
[3]
Kumirska, J.; Wagil, M.; Stolte, S.; Maksymiuk, M.; Puckowski, A. Joanna Maszkowska, Bialk-Bielinska, A.; Caban, M.; Stepnowski, P. Anthelmintics in the aquatic environment: A new analytical approach. Curr. Anal. Chem., 2016, 12(3), 227-236.
[http://dx.doi.org/10.2174/1573411012666151009193940]
[4]
Li, Y.; Yang, C.X.; Yan, X.P. Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem. Commun. (Camb.), 2017, 53(16), 2511-2514.
[http://dx.doi.org/10.1039/C6CC10188G] [PMID: 28184387]
[5]
Zhang, R.; Su, P.; Yang, L.; Yang, Y. Microwave-assisted preparation of poly(ionic liquids)-modified magnetic nanoparticles for pesticide extraction. J. Sep. Sci., 2014, 37(12), 1503-1510.
[http://dx.doi.org/10.1002/jssc.201400125] [PMID: 24687971]
[6]
Xiang, L.; Sheng, H.; Bian, Y.; Kang, J.; Yang, X.; Herzberger, A.; Suanon, F.; Wang, F. Optimization of sample pretreatment based on graphene oxide dispersed acid silica gel for determination of polybrominated diphenyl ethers in vegetables near an e-waste recycling plant. Bull. Environ. Contam. Toxicol., 2019, 103(1), 23-27.
[http://dx.doi.org/10.1007/s00128-019-02547-8] [PMID: 30666386]
[7]
Arnnok, P.; Patdhanagul, N.; Burakham, R. An On-line admicellar SPE-HPLC system using CTAB-modified zeolite NaY as sorbent for determination of carbamate pesticides in water. Chromatographia, 2015, 78, 1327-1337.
[http://dx.doi.org/10.1007/s10337-015-2965-0]
[8]
Khezeli, T.; Daneshfar, A. Dispersive micro-solid-phase extraction of dopamine, epinephrine and nore-pinephrine from biological samples based on green deep eutectic solvents and Fe3O4 @MIL-100 (Fe) core-shell nanoparticles grafted with pyrocatechol. RSC Adv., 2015, 5, 65264-65273.
[http://dx.doi.org/10.1039/C5RA08058D]
[9]
Feng, J.; Ding, H.; Yang, G.; Wang, R.; Li, S.; Liao, J.; Li, Z.; Chen, D. Preparation of black-pearl reduced graphene oxide-sodium alginate hydrogel microspheres for adsorbing organic pollutants. J. Colloid Interface Sci., 2017, 508(15), 387-395.
[http://dx.doi.org/10.1016/j.jcis.2017.07.113] [PMID: 28843928]
[10]
Li, X.; Choi, J.; Ahn, W.S.; Row, K.H. Preparation and application of porous materials based on deep eutectic solvents. Crit. Rev. Anal. Chem., 2018, 48(1), 73-85.
[http://dx.doi.org/10.1080/10408347.2017.1383881] [PMID: 28960087]
[11]
Du, L.; Cheng, Z.; Zhu, P.; Chen, Q.; Wu, Y.; Tan, K. Preparation of mesoporous silica nanoparticles molecularly imprinted polymer for efficient separation and enrichment of perfluorooctane sulfonate. J. Sep. Sci., 2018, 41(23), 4363-4369.
[http://dx.doi.org/10.1002/jssc.201800587] [PMID: 30298988]
[12]
Li, G.; Row, K.H. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques. Separ. Purif. Rev., 2018, 47, 1-18.
[http://dx.doi.org/10.1080/15422119.2017.1315823]
[13]
Meng, Z.; Zhang, L.; Huang, Y. Development of metal-organic framework composites in sample pretreatment. Se Pu, 2018, 36(3), 216-221.
[PMID: 30136498]
[14]
Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci., 2016, 39(18), 3505-3520.
[http://dx.doi.org/10.1002/jssc.201600633] [PMID: 27503573]
[15]
Clark, K.D.; Nacham, O.; Purslow, J.A.; Pierson, S.A.; Anderson, J.L. Magnetic ionic liquids in analytical chemistry: A review. Anal. Chim. Acta, 2016, 934, 9-21.
[http://dx.doi.org/10.1016/j.aca.2016.06.011] [PMID: 27506339]
[16]
Chen, X.; You, X.; Liu, F.; Hou, F.; Zhang, X. Ionic-liquid-based, manual-shaking- and ultrasound-assisted, surfactant-enhanced emulsification microextraction for the determination of three fungicide residues in juice samples. J. Sep. Sci., 2015, 38(1), 93-99.
[http://dx.doi.org/10.1002/jssc.201400970] [PMID: 25394281]
[17]
Zhang, H.; Wang, Y.; Zhou, Y.; Chen, J.; Wei, X.; Xu, P. Aqueous biphasic systems formed by deep eutectic solvent and new-type salts for the high-performance extraction of pigments. Talanta, 2018, 181, 210-216.
[http://dx.doi.org/10.1016/j.talanta.2018.01.014] [PMID: 29426503]
[18]
Freire, M.G. Introduction to ionic-liquid-based aqueous biphasic systems (ABS). In: Ionic-liquid-based aqueous biphasic systems: fundamental and applications; Freire, M.G., Ed.; Springer: Berlin, Heidelberg, 2016; pp. 1-25.
[http://dx.doi.org/10.1007/978-3-662-52875-4_1]
[19]
An, J.; Trujillo-Rodríguez, M.J.; Pino, V.; Anderson, J.L. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J. Chromatogr. A, 2017, 1500, 1-23.
[http://dx.doi.org/10.1016/j.chroma.2017.04.012] [PMID: 28433434]
[20]
Yang, Y.; Qiao, S.; Jin, R.; Zhou, J.; Quan, X. Anti-fouling characteristic of carbon nanotubes hollow fiber membranes by filtering natural organic pollutants. Korean J. Chem. Eng., 2018, 35(4), 964-973.
[http://dx.doi.org/10.1007/s11814-017-0354-0]
[21]
Wei, G.I.; Quan, X.; Fan, X.; Chen, S.; Zhang, Y. Carbon-nanotube-based sandwich-like hollow fiber membranes for expanded microcystin-LR removal applications. Chem. Eng. J., 2017, 319(1), 212-218.
[http://dx.doi.org/10.1016/j.cej.2017.02.125]
[22]
Sehati, N.; Dalali, N.; Soltanpour, S.; Seyed Dorraji, M.S. Application of hollow fiber membrane mediated with titanium dioxide nanowire/reduced graphene oxide nanocomposite in preconcentration of clotrimazole and tylosin. J. Chromatogr. A, 2015, 1420, 46-53.
[http://dx.doi.org/10.1016/j.chroma.2015.09.063] [PMID: 26477522]
[23]
Yang, H.Y.; Li, H.F.; Masahito, I.; Lin, J.M.; Guo, G.S.; Ding, M.Y. Combination of dynamic hollow fiber liquid-phase microextraction with HPLC analysis for the determination of UV filters in cosmetic products. Sci. China Chem., 2011, 54, 1627-1634.
[http://dx.doi.org/10.1007/s11426-011-4331-x]
[24]
Wang, T.; Wang, J.; Zhang, C.; Yang, Z.; Dai, X.; Cheng, M.; Hou, X. Metal-organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study. Analyst (Lond.), 2015, 140(15), 5308-5316.
[http://dx.doi.org/10.1039/C5AN00553A] [PMID: 26076497]
[25]
Yahaya, N.; Sanagi, M.M.; Nur, H.; Ibrahim, W.A.W.; Kamaruzaman, S.; Aboul-Enein, H.Y. Solid-phase membrane tip extraction combined with liquid chromatography for the determination of azole antifungal drugs in human plasma. Anal. Methods, 2014, 6, 3375-3381.
[http://dx.doi.org/10.1039/C3AY42010H]
[26]
Yu, C.; Davey, M.H.; Svec, F.; Fréchet, J.M.J. Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal. Chem., 2001, 73(21), 5088-5096.
[http://dx.doi.org/10.1021/ac0106288] [PMID: 11721904]
[27]
Liu, J.; Chen, C.F.; Tsao, C.W.; Chang, C.C.; Chu, C.C.; DeVoe, D.L. Polymer microchips integrating solid-phase extraction and high-performance liquid chromatography using reversed-phase polymethacrylate monoliths. Anal. Chem., 2009, 81(7), 2545-2554.
[http://dx.doi.org/10.1021/ac802359e] [PMID: 19267447]
[28]
Yang, R.; Pagaduan, J.V.; Yu, M.; Woolley, A.T. On chip preconcentration and fluorescence labeling of model proteins by use of monolithic columns: device fabrication, optimization, and automation. Anal. Bioanal. Chem., 2015, 407(3), 737-747.
[http://dx.doi.org/10.1007/s00216-014-7988-0] [PMID: 25012353]
[29]
Dugan, C.E.; Grinias, J.P.; Parlee, S.D.; El-Azzouny, M.; Evans, C.R.; Kennedy, R.T. Monitoring cell secretions on microfluidic chips using solid-phase extraction with mass spectrometry. Anal. Bioanal. Chem., 2017, 409(1), 169-178.
[http://dx.doi.org/10.1007/s00216-016-9983-0] [PMID: 27761614]
[30]
Levy, M.H.; Goswami, S.; Plawsky, J.; Cramer, S.M. Parameters governing the formation of photopolymerized silicasol-gel monoliths in pdms microfluidic chips. Chromatographia, 2013, 76(15), 993-1002.
[http://dx.doi.org/10.1007/s10337-013-2493-8] [PMID: 28450752]
[31]
Wu, J.; Zhao, H.; Xiao, D.; Chuong, P.H.; He, J.; He, H. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis. J. Chromatogr. A, 2016, 1454, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2016.05.071] [PMID: 27266334]
[32]
Quesada-Molina, C.; García-Campaña, A.M.; del Olmo-Iruela, M. Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples. Talanta, 2013, 115, 943-949.
[http://dx.doi.org/10.1016/j.talanta.2013.07.008] [PMID: 24054686]
[33]
Lirio, S.; Liu, W.L.; Lin, C.L.; Lin, C.H.; Huang, H.Y. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. J. Chromatogr. A, 2016, 1428, 236-245.
[http://dx.doi.org/10.1016/j.chroma.2015.05.043] [PMID: 26065570]
[34]
Guan, J.; Zhang, C.; Wang, Y.; Guo, Y.; Huang, P.; Zhao, L. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem., 2016, 408(28), 8099-8109.
[http://dx.doi.org/10.1007/s00216-016-9913-1] [PMID: 27614980]
[35]
Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A, 2013, 1292, 173-188.
[http://dx.doi.org/10.1016/j.chroma.2012.12.072] [PMID: 23347979]
[36]
Yu, X.; Tang, X.; Zuo, J.; Zhang, M.; Chen, L.; Li, Z. Distribution and persistence of cephalosporins in cephalosporin producing wastewater using SPE and UPLC-MS/MS method. Sci. Total Environ., 2016, 569-570, 23-30.
[http://dx.doi.org/10.1016/j.scitotenv.2016.06.113] [PMID: 27328396]
[37]
Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Bidshahi, H.S.; Mesdaghinia, A. An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology- central composite design. J. Environ. Health Sci. Eng., 2017, 15(1), 21.
[http://dx.doi.org/10.1186/s40201-017-0282-2] [PMID: 29075502]
[38]
Lima Gomes, P.C.; Tomita, I.N.; Santos-Neto, Á.J.; Zaiat, M. Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem., 2015, 407(29), 8787-8801.
[http://dx.doi.org/10.1007/s00216-015-9038-y] [PMID: 26446896]
[39]
Chen, W.S.; Tan, H.J.; Luo, Z.B.; Zhong, Z.X.; Hu, J.Q.; Su, G.N.; Peng, J. Determination of common antibiotics in water by dispersive liquid-liquid microextraction coupled with liquid chromatography. J. Environ. Hyg., 2019, 9(2), 167-171.
[40]
Ma, S.S.; Liu, Y.; Yu, R.; Zhang, Z.H.; Yu, C.G.; Song, H.L.; Wang, C.Y. Determination of sodium penicillin in soil through accelerated solvent extraction and solid phase extraction followed by high performance liquid chromatography(ASE-SPE-HPLC). Environ. Chem., 2014, 33(11), 1978-1985.
[41]
An, J.; Wang, X.; Ye, N. Molybdenum disulfide as a dispersive solid‐phase extraction adsorbent for determination of sulfonamide residues in water samples using capillary electrophoresis. ChemistrySelect, 2017, 2(28), 9046-9051.
[http://dx.doi.org/10.1002/slct.201701382]
[42]
Xie, X.; Liu, X.; Pan, X.; Chen, L.; Wang, S. Surface-imprinted magnetic particles for highly selective sulfonamides recognition prepared by reversible addition fragmentation chain transfer polymerization. Anal. Bioanal. Chem., 2016, 408(3), 963-970.
[http://dx.doi.org/10.1007/s00216-015-9190-4] [PMID: 26637219]
[43]
Chatzimitakos, T.G.; Pierson, S.A.; Anderson, J.L.; Stalikas, C.D. Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach. J. Chromatogr. A, 2018, 1571, 47-54.
[http://dx.doi.org/10.1016/j.chroma.2018.08.013] [PMID: 30119971]
[44]
Wang, H.; Ding, J.; Ding, L.; Ren, N. Analysis of sulfonamides in soil, sediment, and sludge based on dynamic microwave-assisted micellar extraction. Environ. Sci. Pollut. Res. Int., 2016, 23(13), 12954-12965.
[http://dx.doi.org/10.1007/s11356-016-6383-0] [PMID: 26996907]
[45]
Wu, H.Z.; Qian, M.R.; Wang, J.M.; Zhang, H.; Ma, J.W.; Li, Z.G.; Lee, M.R. Simultaneous determination of sulfonamides and metabolites in manure samples by one-step ultrasound/microwave-assisted solid-liquid-solid dispersive extraction and liquid chromatography-mass spectrometry. Anal. Bioanal. Chem., 2015, 407(13), 3545-3554.
[http://dx.doi.org/10.1007/s00216-015-8503-y] [PMID: 25732092]
[46]
Wang, S.; Li, S.; Zhang, X.; Wei, Y.; Zhang, M.; Zhang, J. Analysis of sulfonamids and their metabolites in drinking water by high Performance liquid chromatography tandem mass spectrometry. Wei Sheng Yan Jiu, 2015, 44(4), 652-657.
[PMID: 26454967]
[47]
Chullasat, K.; Nurerk, P.; Kanatharana, P.; Kueseng, P.; Sukchuay, T.; Bunkoed, O. Hybrid monolith sorbent of polypyrrole-coated graphene oxide incorporated into a polyvinyl alcohol cryogel for extraction and enrichment of sulfonamides from water samples. Anal. Chim. Acta, 2017, 961, 59-66.
[http://dx.doi.org/10.1016/j.aca.2017.01.052] [PMID: 28224909]
[48]
Lara, F.J.; García-Campaña, A.M.; Neusüss, C.; Alés-Barrero, F. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis. J. Chromatogr. A, 2009, 1216(15), 3372-3379.
[http://dx.doi.org/10.1016/j.chroma.2009.01.097] [PMID: 19232622]
[49]
Wang, S.; Zhang, J.; Shao, B. Analysis of Chloramphenicol, sulfonamides, fluoroquinolones, tetracyclines and macrolides in sewage sludge by ultra performance liquid chromatography-tandem mass spectrometry. Fenxi Ceshi Xuebao, 2013, 32(2), 179-185.
[50]
Łukaszewicz, P.; Białk-Bielińska, A.; Dołżonek, J.; Kumirska, J.; Caban, M.; Stepnowski, P. A new approach for the extraction of tetracyclines from soil matrices: Application of the microwave-extraction technique. Anal. Bioanal. Chem., 2018, 410(6), 1697-1707.
[http://dx.doi.org/10.1007/s00216-017-0815-7] [PMID: 29350257]
[51]
Guo, M.; Yu, F.; Jia, K.L.; Li, J.; Sun, H. Determination of tetracycline antibiotics in environmental water using magnetic solid phase extraction combined with high performance liquid chromatography-tandem mass spectrometry. Se Pu, 2016, 34(4), 407-413.
[http://dx.doi.org/10.3724/SP.J.1123.2015.11038]
[52]
Patyra, E.; Kowalczyk, E.; Grelik, A.; Przeniosło-Siwczyńska, M.; Kwiatek, K. Screening method for the determination of tetracyclines and fluoroquinolones in animal drinking water by liquid chromatography with diode array detector. Pol. J. Vet. Sci., 2015, 18(2), 283-289.
[http://dx.doi.org/10.1515/pjvs-2015-0037] [PMID: 26172177]
[53]
Liu, M.K.; Liu, Y.Y.; Bao, D.D.; Zhu, G.; Yang, G.H.; Geng, J.F.; Li, H.T. Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Sci. Sci. Rep., 2017, 7, 43717.
[http://dx.doi.org/10.1038/srep43717] [PMID: 28255174]
[54]
Qi, M.; Tu, C.; Dai, Y.; Wang, W.; Wang, A.; Chen, J. A simple colorimetric analytical assay using gold nanoparticles for specific detection of tetracycline in environmental water samples. Anal. Methods, 2018, 10(27), 3402-3407.
[http://dx.doi.org/10.1039/C8AY00713F]
[55]
Liu, C.; Huang, M.H.; Xiao, B. Determination of the Distribution Characteristics of Tetracyclines in Wastewater Treatment Plant. Guangzhou Huagong, 2012, 40(14), 153-156.
[56]
Zhuang, Y.; Peng, Y.; Zhao, Y.G.; He, H.; Sun, C.; Yang, S.G. Determination of tetracyclines in water and milk by solid-phase microextraction based on tetracylines molecularly imprinted polymers coupled with HPLC. J. Anal. Sci., 2014, 30(4), 451-456.
[57]
Yang, X.Q.; Yang, C.X.; Yan, X.P. Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. J. Chromatogr. A, 2013, 1304, 28-33.
[http://dx.doi.org/10.1016/j.chroma.2013.06.064] [PMID: 23870544]
[58]
Hu, W.; Ma, L.; Guo, C.; Sha, J.; Zhu, X.; Wang, Y. Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int. J. Environ. Anal. Chem., 2012, 92(6), 698-713.
[http://dx.doi.org/10.1080/03067319.2010.520122]
[59]
Zhang, M.; Qiao, J.; Zhao, Z.; Zhang, S.; Qi, L. Fabrication of polymer-modified magnetic nanoparticle based adsorbents for the capture and release of quinolones by manipulating the metal-coordination interaction. J. Sep. Sci., 2018, 41(14), 2976-2982.
[http://dx.doi.org/10.1002/jssc.201800307] [PMID: 29799163]
[60]
Rodrigues-Silva, C.; Porto, R.S.; dos Santos, S.G.; Schneider, J.; Rath, S. Fluoroquinolones in hospital wastewater: Analytical method, occurrence, treatment with ozone and residual antimicrobial activity evaluation. J. Braz. Chem. Soc., 2019, 30(7), 1447-1457.
[http://dx.doi.org/10.21577/0103-5053.20190040]
[61]
Arroyo-Manzanares, N.; Huertas-Pérez, J.F.; Lombardo-Agüí, M.; Gámiz-Gracia, L.; García-Campaña, A.M. A high-throughput method for the determination of quinolones in different matrices by ultra-high performance liquid chromatography with fluorescence detection. Anal. Methods, 2015, 7(1), 253-259.
[http://dx.doi.org/10.1039/C4AY01940G]
[62]
Tang, W.; Row, K.H. Fabrication of water-compatible molecularly imprinted resin in a hydrophilic deep eutectic solvent for the determination and purification of quinolones in wastewaters. Polymers (Basel), 2019, 11(5), 871.
[http://dx.doi.org/10.3390/polym11050871] [PMID: 31086066]
[63]
Xu, W.B.; Zhang, L.; Liu, Y.X.; Jiang, Z.J. Determination and extracted directly of fluoroqronolone in cosmetics by HPLC. Guangzhou Huagong, 2012, 40(7), 128-129.
[64]
Zhang, J.; Liu, D.; Shi, Y.; Sun, C.; Niu, M.; Wang, R.; Hu, F.; Xiao, D.; He, H. Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1068-1069, 24-32.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.046] [PMID: 29028615]
[65]
Kumirska, J.; Migowska, N.; Caban, M.; Łukaszewicz, P.; Stepnowski, P. Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Sci. Total Environ., 2015, 508, 498-505.
[http://dx.doi.org/10.1016/j.scitotenv.2014.12.020] [PMID: 25522321]
[66]
Amin, M.M.; Bina, B.; Ebrahimi, A.; Yavari, Z.; Mohammadi, F.; Rahimi, S. The occurrence, fate, and distribution of natural and synthetic hormones in different types of wastewater treatment plants in Iran. Chin. J. Chem. Eng., 2018, 26(5), 1132-1139.
[http://dx.doi.org/10.1016/j.cjche.2017.09.005]
[67]
Iglesias, A.; Nebot, C.; Miranda, J.M.; Vázquez, B.I.; Cepeda, A. Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry. Environ. Sci. Pollut. Res. Int., 2012, 19(8), 3235-3249.
[http://dx.doi.org/10.1007/s11356-012-0830-3] [PMID: 22392691]
[68]
Martínez, N.A.; Pereira, S.V.; Bertolino, F.A.; Schneider, R.J.; Messina, G.A.; Raba, J. Electrochemical detection of a powerful estrogenic endocrine disruptor: Ethinylestradiol in water samples through bioseparation procedure. Anal. Chim. Acta, 2012, 723, 27-32.
[http://dx.doi.org/10.1016/j.aca.2012.02.033] [PMID: 22444569]
[69]
Zuo, Y.; Zhang, K.; Zhou, S. Determination of estrogenic steroids and microbial and photochemical degradation of 17α-ethinylestradiol (EE2) in lake surface water, a case study. Environ. Sci. Process. Impacts, 2013, 15(8), 1529-1535.
[http://dx.doi.org/10.1039/c3em00239j] [PMID: 23788286]
[70]
Albero, B.; Sánchez-Brunete, C.; Miguel, E.; Pérez, R.A.; Tadeo, J.L. Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2013, 1283, 39-45.
[http://dx.doi.org/10.1016/j.chroma.2013.01.113] [PMID: 23465128]
[71]
Rao, K.; Lei, B.; Li, N.; Ma, M.; Wang, Z. Determination of estrogens and estrogenic activities in water from three rivers in Tianjin, China. J. Environ. Sci. (China), 2013, 25(6), 1164-1171.
[http://dx.doi.org/10.1016/S1001-0742(12)60149-1] [PMID: 24191606]
[72]
Azzouz, A.; Ballesteros, E. Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography-mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Sci. Total Environ., 2012, 419, 208-215.
[http://dx.doi.org/10.1016/j.scitotenv.2011.12.058] [PMID: 22285085]
[73]
Salvia, M.V.; Vulliet, E.; Wiest, L.; Baudot, R.; Cren-Olivé, C. Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography-tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. J. Chromatogr. A, 2012, 1245, 122-133.
[http://dx.doi.org/10.1016/j.chroma.2012.05.034] [PMID: 22647188]
[74]
Ma, L.Y.; Li, Q.; Li, J.; Xu, L. Preparation of highly hydrophilic magnetic nanoparticles with anion-exchange ability and their application for the extraction of non-steroidal anti-inflammatory drugs in environmental samples. J. Sep. Sci., 2018, 41(3), 678-688.
[http://dx.doi.org/10.1002/jssc.201700881] [PMID: 29094794]
[75]
Ramos-Payan, M.; Maspoch, S.; Llobera, A. An effective microfluidic based liquid-phase microextraction device (μLPME) for extraction of non-steroidal anti-inflammatory drugs from biological and environmental samples. Anal. Chim. Acta, 2016, 946, 56-63.
[http://dx.doi.org/10.1016/j.aca.2016.09.040] [PMID: 27823669]
[76]
Toledo-Neira, C.; Álvarez-Lueje, A. Ionic liquids for improving the extraction of NSAIDs in water samples using dispersive liquid-liquid microextraction by high performance liquid chromatography-diode array-fluorescence detection. Talanta, 2015, 134, 619-626.
[http://dx.doi.org/10.1016/j.talanta.2014.11.067] [PMID: 25618715]
[77]
Shamsayei, M.; Yamini, Y.; Asiabi, H.; Safari, M. On-line packed magnetic in-tube solid phase microextraction of acidic drugs such as naproxen and indomethacin by using Fe3O4@SiO2@layered double hydroxide nanoparticles with high anion exchange capacity. Mikrochim. Acta, 2018, 185(3), 192.
[http://dx.doi.org/10.1007/s00604-018-2716-7] [PMID: 29594488]
[78]
Bragança, I.; Plácido, A.; Paíga, P.; Domingues, V.F.; Delerue-Matos, C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci. Total Environ., 2012, 433, 281-289.
[http://dx.doi.org/10.1016/j.scitotenv.2012.06.035] [PMID: 22796726]
[79]
Deng, Y.; Shen, J.; Liu, J.; Wei, Y.; Wang, C. A magnetic adsorbent grafted with pendant naphthyl polymer brush for enrichment of the nonsteroidal anti-inflammatory drugs indomethacin and diclofenac. Mikrochim. Acta, 2018, 185(8), 370.
[http://dx.doi.org/10.1007/s00604-018-2913-4] [PMID: 29987393]
[80]
Hou, M.Y. Graphene--based Magnetic Solid-·phase Extraction Coupled with GC’MS for the Determination of Some Environmental Pollutants; Agricultural University of Hebei, 2014.
[81]
Eslami, A.; Amini, M.M.; Yazdanbakhsh, A.R.; Rastkari, N.; Mohseni-Bandpei, A.; Nasseri, S.; Piroti, E.; Asadi, A. Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment. Environ. Monit. Assess., 2015, 187(12), 734.
[http://dx.doi.org/10.1007/s10661-015-4952-1] [PMID: 26553436]
[82]
Li, C.; Chen, L. Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis. Chromatographia, 2013, 76(7-8), 409-417.
[http://dx.doi.org/10.1007/s10337-013-2393-y]
[83]
Shi, Z.; Hu, J.; Li, Q.; Zhang, S.; Liang, Y.; Zhang, H. Graphene based solid phase extraction combined with ultra high performance liquid chromatography-tandem mass spectrometry for carbamate pesticides analysis in environmental water samples. J. Chromatogr. A, 2014, 1355, 219-227.
[http://dx.doi.org/10.1016/j.chroma.2014.05.085] [PMID: 24973804]
[84]
Kafilzadeh, F.; Shiva, A.H.; Malekpour, R.; Azad, H.N. Determination of organochlorine pesticide residues in water, sediments and fish from Lake Parishan, Iran. World J. Fish Mar. Sci., 2012, 4(2), 150-154.
[85]
Lari, S.Z.; Khan, N.A.; Gandhi, K.N.; Meshram, T.S.; Thacker, N.P. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J. Environ. Health Sci. Eng., 2014, 12(1), 11.
[http://dx.doi.org/10.1186/2052-336X-12-11] [PMID: 24398360]
[86]
Švorc, Ľ.; Rievaj, M.; Bustin, D. Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sens. Actuators B Chem., 2013, 181, 294-300.
[http://dx.doi.org/10.1016/j.snb.2013.02.036]
[87]
Zhao, Q.; Lu, Q.; Feng, Y.Q. Dispersive microextraction based on magnetic polypyrrole nanowires for the fast determination of pesticide residues in beverage and environmental water samples. Anal. Bioanal. Chem., 2013, 405(14), 4765-4776.
[http://dx.doi.org/10.1007/s00216-013-6866-5] [PMID: 23515608]
[88]
Ren, X.; Chen, L. Quantum dots coated with molecularly imprinted polymer as fluorescence probe for detection of cyphenothrin. Biosens. Bioelectron., 2015, 64, 182-188.
[http://dx.doi.org/10.1016/j.bios.2014.08.086] [PMID: 25218102]
[89]
Gong, X.M.; Wang, H.T.; Hua, M.M.; Wang, L. Determination of Pesticide Residues in Vegetable Greenhouse Soil by UPLC-HR-MS and QuEChERS. J. Insp. Quar., 2017, 27(3), 24-30.
[90]
Dos Anjos, J.P.; de Andrade, J.B. Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC-MS. Microchem. J., 2014, 112, 119-126.
[http://dx.doi.org/10.1016/j.microc.2013.10.001]
[91]
Caldas, S.S.; Rombaldi, C.; Arias, J.L.; Marube, L.C.; Primel, E.G. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry. Talanta, 2016, 146, 676-688.
[http://dx.doi.org/10.1016/j.talanta.2015.06.047] [PMID: 26695317]
[92]
Tankiewicz, M.; Morrison, C.; Biziuk, M. Multi-residue method for the determination of 16 recently used pesticides from various chemical groups in aqueous samples by using DI-SPME coupled with GC-MS. Talanta, 2013, 107, 1-10.
[http://dx.doi.org/10.1016/j.talanta.2012.12.052] [PMID: 23598184]
[93]
Gago-Ferrero, P.; Borova, V.; Dasenaki, M.E.; Thomaidis, N.S. Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2015, 407(15), 4287-4297.
[http://dx.doi.org/10.1007/s00216-015-8540-6] [PMID: 25716466]
[94]
Daglioglu, N.; Guzel, E.Y.; Kilercioglu, S. Assessment of illicit drugs in wastewater and estimation of drugs of abuse in Adana Province, Turkey. Forensic Sci. Int., 2019, 294, 132-139.
[http://dx.doi.org/10.1016/j.forsciint.2018.11.012] [PMID: 30529037]
[95]
Martins, A.F.; Dos Santos, J.B.; Todeschini, B.H.; Saldanha, L.F.; da Silva, D.S.; Reichert, J.F.; Souza, D.M. Occurrence of cocaine and metabolites in hospital effluent - A risk evaluation and development of a HPLC method using DLLME. Chemosphere, 2017, 170, 176-182.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.019] [PMID: 27988453]
[96]
Gou, X.L.; Liu, W.L.; Zhang, M.; Gao, X.; Zhao, X.Y. Rapid screening and quantitative detection of 6 prohibited drugs in shampoo and hair growth cosmetics by UPLC-MS/MS. J. Chin. Mass Spectrom. Soc., 2018, 39(4), 485-491.
[97]
Evans, S.E.; Davies, P.; Lubben, A.; Kasprzyk-Hordern, B. Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry. Anal. Chim. Acta, 2015, 882, 112-126.
[http://dx.doi.org/10.1016/j.aca.2015.03.039] [PMID: 26043098]
[98]
Mao, K.; Ma, J.; Li, X.; Yang, Z. Rapid duplexed detection of illicit drugs in wastewater using gold nanoparticle conjugated aptamer sensors. Sci. Total Environ., 2019, 688, 771-779.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.325] [PMID: 31255815]
[99]
Mardal, M.; Kinyua, J.; Ramin, P.; Miserez, B.; Van Nuijs, A.L.; Covaci, A.; Meyer, M.R. Screening for illicit drugs in pooled human urine and urinated soil samples and studies on the stability of urinary excretion products of cocaine, MDMA, and MDEA in wastewater by hyphenated mass spectrometry techniques. Drug Test. Anal., 2017, 9(1), 106-114.
[http://dx.doi.org/10.1002/dta.1957] [PMID: 26888521]
[100]
Kinyua, J.; Covaci, A.; Maho, W.; McCall, A.K.; Neels, H.; van Nuijs, A.L. Sewage-based epidemiology in monitoring the use of new psychoactive substances: Validation and application of an analytical method using LC-MS/MS. Drug Test. Anal., 2015, 7(9), 812-818.
[http://dx.doi.org/10.1002/dta.1777] [PMID: 25655588]
[101]
Campestrini, I.; Jardim, W.F. Occurrence of cocaine and benzoylecgonine in drinking and source water in the São Paulo State region, Brazil. Sci. Total Environ., 2017, 576, 374-380.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.089] [PMID: 27792954]
[102]
Jacox, A.; Wetzel, J.; Cheng, S.Y.; Concheiro, M. Quantitative analysis of opioids and cannabinoids in wastewater samples. Forensic Sci. Rev., 2017, 2(1), 18-25.
[http://dx.doi.org/10.1080/20961790.2016.1270812] [PMID: 30483615]
[103]
Mokh, S.; El Hawari, K.; Nassar, R.; Budzinski, H.; Al Iskandarani, M. Optimization of a solid-phase extraction method for the determination of 12 aminoglycosides in water samples using LC-ESI-MS/MS. Chromatographia, 2015, 78(9-10), 631-640.
[http://dx.doi.org/10.1007/s10337-015-2877-z]
[104]
Arbeláez, P.; Granados, J.; Borrull, F.; Marcé, R.M.; Pocurull, E. Determination of sedative hypnotics in sewage sludge by pressurized liquid extraction with high-performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci., 2014, 37(23), 3481-3488.
[http://dx.doi.org/10.1002/jssc.201400791] [PMID: 25223648]
[105]
Tu, Y.Y.; Hsieh, M.M.; Chang, S.Y. Sensitive detection of piperazinyl phenothiazine drugs by field-amplified sample stacking in capillary electrophoresis with dispersive liquid-liquid microextraction. Electrophoresis, 2015, 36(21-22), 2828-2836.
[http://dx.doi.org/10.1002/elps.201500260] [PMID: 26293159]
[106]
Li, X.J.; Yu, H.; Gan, P.S. Determination of antibiotic residues in soil by UPLC-MS/MS. J. Environ. Hyg., 2016, 6(4), 296-299.
[107]
Li, S.; Shi, W.; Li, H.; Xu, N.; Zhang, R.; Chen, X.; Sun, W.; Wen, D.; He, S.; Pan, J.; He, Z.; Fan, Y. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ., 2018, 636, 1009-1019.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.358] [PMID: 29913564]
[108]
Vardini, M.T.; Mashayekhi, H.A.; Saber-Tehrani, M. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for the simultaneous determination of alprazolam, oxazepam, and diazepam in human urine samples. J. Liq. Chromatogr. Relat. Technol., 2012, 35(7), 988-999.
[http://dx.doi.org/10.1080/10826076.2011.637277]
[109]
Racamonde, I.; Quintana, J.B.; Rodil, R.; Cela, R. Application of polypropylene tubes as single-use and low-cost sorptive extraction materials for the determination of benzodiazepines and zolpidem in water samples. Microchem. J., 2015, 119, 58-65.
[http://dx.doi.org/10.1016/j.microc.2014.10.011]
[110]
Aminot, Y.; Litrico, X.; Chambolle, M.; Arnaud, C.; Pardon, P.; Budzindki, H. Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2015, 207(28), 8585-8604.
[http://dx.doi.org/10.1007/s00216-015-9017-3] [PMID: 26353747]
[111]
Chen, J.H.; Xu, W.T.; Gao, Y. Determination of hypnotics in urine by solid-phase extraction GC/MS. Crim. Technol., 2014, 39(4), 3-4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy