General Review Article

Biomarkers for Early Detection of Colitis-associated Colorectal Cancer - Current Concepts, Future Trends

Author(s): Tomasz Mackiewicz, Aleksander Sowa and Jakub Fichna*

Volume 22, Issue 1, 2021

Published on: 20 February, 2020

Page: [137 - 145] Pages: 9

DOI: 10.2174/1389450121666200220123844

Price: $65

Abstract

Colitis-associated colorectal cancer (CAC) remains a critical complication of ulcerative colitis (UC) with a mortality of approximately 15%, which makes early CAC diagnosis crucial. The current standard of surveillance, with repetitive colonoscopies and histological testing of biopsied mucosa samples, is burdensome and expensive, and therefore less invasive methods and reliable biomarkers are needed. Significant progress has been made, thanks to continuous extensive research in this field, however, no clinically relevant biomarker has been established so far. This review of the current literature presents the genetic and molecular differences between CAC and sporadic colorectal cancer and covers progress made in the early detection of CAC carcinogenesis. It focuses on biomarkers under development, which can easily be tested in samples of body fluids or breath and, once made clinically available, will help to differentiate between progressors (UC patients who will develop dysplasia) from non-progressors and enable early intervention to decrease the risk of cancer development.

Keywords: Inflammatory bowel disease, ulcerative colitis, Crohn’s disease, colitis-associated colorectal cancer, colorectal cancer, surveillance, biomarkers.

Graphical Abstract

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 2010; 116(3): 544-73.
[http://dx.doi.org/10.1002/cncr.24760] [PMID: 19998273]
[3]
Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009; 22(4): 191-7.
[http://dx.doi.org/10.1055/s-0029-1242458] [PMID: 21037809]
[4]
Sebastian S, Hernández V, Myrelid P, et al. Colorectal cancer in inflammatory bowel disease: results of the 3rd ECCO pathogenesis scientific workshop (I). J Crohn’s Colitis 2014; 8(1): 5-18.
[http://dx.doi.org/10.1016/j.crohns.2013.04.008] [PMID: 23664897]
[5]
Watanabe T, Konishi T, Kishimoto J, Kotake K, Muto T, Sugihara K. Ulcerative Colitis-associated Colorectal Cancer Shows 1998; 17(3): 1-7.
[http://dx.doi.org/10.1002/ibd21365]
[6]
Zheng HH, Jiang XL. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. Eur J Gastroenterol Hepatol 2016; 28(4): 383-90.
[http://dx.doi.org/10.1097/MEG.0000000000000576] [PMID: 26938805]
[7]
Høivik ML, Moum B, Solberg IC, Henriksen M, Cvancarova M, Bernklev T. Work disability in inflammatory bowel disease patients 10 years after disease onset: results from the IBSEN Study. Gut 2013; 62(3): 368-75.
[http://dx.doi.org/10.1136/gutjnl-2012-302311] [PMID: 22717453]
[8]
Torres J, Billioud V, Sachar DB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis as a progressive disease: the forgotten evidence. Inflamm Bowel Dis 2012; 18(7): 1356-63.
[http://dx.doi.org/10.1002/ibd.22839] [PMID: 22162423]
[9]
Harbord M, Eliakim R, Bettenworth D, et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: Part 2: Surgical management and special situations. J Crohn’s Colitis 2017; 11(7): 649-70.
[http://dx.doi.org/10.1093/ecco-jcc/jjw168]
[10]
Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 2015; 12(4): 205-17.
[http://dx.doi.org/10.1038/nrgastro.2015.34] [PMID: 25732745]
[11]
Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1785-94.
[http://dx.doi.org/10.1053/j.gastro.2011.01.055] [PMID: 21530745]
[12]
Epidemiology D. Clinical Epidemiology of Inflammatory Bowel Disease : Incidence. Prevalence, and Environmental Influences 2004; pp. 1504-17.
[13]
Shapiro JM, Zoega H, Shah SA, et al. Incidence of Crohn’s disease and ulcerative colitis in rhode island: report from the ocean state Crohn’s and Colitis Area Registry. s 2016; 22(6): 1456-61.
[14]
Bernstein CN, Wajda A, Svenson LW, et al. The epidemiology of inflammatory bowel disease in Canada: A Population-Based Study. 2006; 1559-68.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00603.x]
[15]
Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142(1): 46-54.e42.
[http://dx.doi.org/10.1053/j.gastro.2011.10.001] [PMID: 22001864]
[16]
Shivananda S, Lennard-Jones J, Logan R, et al. Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 1996; 39(5): 690-7.
[http://dx.doi.org/10.1136/gut.39.5.690] [PMID: 9014768]
[17]
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018; 390(10114): 2769-78.
[http://dx.doi.org/10.1016/S0140-6736(17)32448-0] [PMID: 29050646]
[18]
Sandborn W, Sands BE, Reinisch W, Bemelman W. Selecting Therapeutic Targets in Infl ammatory Bowel Disease (STRIDE). Determining Therapeutic Goals for 2014 2015; 110: 1324-38.
[http://dx.doi.org/10.1038/ajg.2015.233]
[19]
Torres J, Danese S, Colombel J. New therapeutic avenues in ulcerative colitis: thinking out of the box. 1642-52.
[http://dx.doi.org/10.1136/gutjnl-2012-303959]
[20]
Magro F, Rodrigues A, Vieira AI, et al. Review of the disease course among adult ulcerative colitis population-based longitudinal cohorts. Inflamm Bowel Dis 2012; 18(3): 573-83.
[http://dx.doi.org/10.1002/ibd.21815] [PMID: 21793126]
[21]
Yang L, Levi E, Du JH, Zhou HH, Miller R, Majumdar APN. Associations between markers of colorectal cancer stem cells, mutation, microRNA and the clinical features of ulcerative colitis. Colorectal Dis 2016; 18(6): O185-93.
[http://dx.doi.org/10.1111/codi.13371] [PMID: 27153478]
[22]
Castaño-Milla C, Chaparro M, Gisbert JP. Systematic review with meta-analysis: the declining risk of colorectal cancer in ulcerative colitis. Aliment Pharmacol Ther 2014; 39(7): 645-59.
[http://dx.doi.org/10.1111/apt.12651] [PMID: 24612141]
[23]
Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis 2001; 526-35.
[24]
Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990; 323(18): 1228-33.
[http://dx.doi.org/10.1056/NEJM199011013231802] [PMID: 2215606]
[25]
Romano MDE, Francesco F, Zarantonello L, et al. From Inflammation to Cancer in Inflammatory Bowel Disease: Molecular Perspectives. Anticancer Res 2016; 36(4): 1447-60.
[PMID: 27069120]
[26]
Principi M, Scavo MP, Piscitelli D, et al. The sharp decline of beta estrogen receptors expression in long-lasting ulcerative-associated carcinoma. Scand J Gastroenterol 2015; 50(8): 1002-10.
[http://dx.doi.org/10.3109/00365521.2014.978817] [PMID: 25862314]
[27]
Isidro RA, Cruz ML, Isidro AA, et al. Immunohistochemical expression of SP-NK-1R-EGFR pathway and VDR in colonic inflammation and neoplasia. World J Gastroenterol 2015; 21(6): 1749-58.
[http://dx.doi.org/10.3748/wjg.v21.i6.1749] [PMID: 25684939]
[28]
Takahashi H, Jin C, Rajabi H, et al. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene 2015; 34(40): 5187-97.
[http://dx.doi.org/10.1038/onc.2014.442] [PMID: 25659581]
[29]
Zhu Y, Zhou J, Feng Y, et al. Control of intestinal inflammation, colitis-associated tumorigenesis, and macrophage polarization by fibrinogen-like protein 2. Front Immunol 2018; 9(JAN): 87.
[http://dx.doi.org/10.3389/fimmu.2018.00087] [PMID: 29441068]
[30]
Wang ZH, Fang JY. Colorectal Cancer in Inflammatory Bowel Disease: Epidemiology, Pathogenesis and Surveillance. Gastrointest Tumors 2014; 1(3): 146-54.
[http://dx.doi.org/10.1159/000365309] [PMID: 26674110]
[31]
Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015; 372(15): 1441-52.
[http://dx.doi.org/10.1056/NEJMra1403718] [PMID: 25853748]
[32]
Bressenot A, Cahn V, Danese S, Peyrin-biroulet L. Microscopic features of colorectal neoplasia in inflammatory bowel diseases 2014; 20(12): 3164-72.
[http://dx.doi.org/10.3748/wjg.v20.i12.3164]
[33]
Kobayashi K, Tomita H, Shimizu M, et al. p53 Expression as a Diagnostic Biomarker in Ulcerative Colitis-Associated Cancer. Int J Mol Sci 2017; 18(6): 1284.
[http://dx.doi.org/10.3390/ijms18061284] [PMID: 28621756]
[34]
Burmer G. Neoplastic Progression in Ulcerative Colitis 1992.1602-10..
[35]
Kameyama H, Nagahashi M, Shimada Y, et al. Genomic characterization of colitis-associated colorectal cancer. World J Surg Oncol 2018; 16(1): 121.
[http://dx.doi.org/10.1186/s12957-018-1428-0] [PMID: 29966533]
[36]
Robles AI, Traverso G, Zhang M, et al. Whole-Exome Sequencing Analyses of Inflammatory Bowel Disease-Associated Colorectal Cancers. Gastroenterology 2016; 150(4): 931-43.
[http://dx.doi.org/10.1053/j.gastro.2015.12.036] [PMID: 26764183]
[37]
Grivennikov SI, Cominelli F. Colitis-Associated and Sporadic Colon Cancers: Different Diseases, Different Mutations? Gastroenterology 2016; 150(4): 808-10.
[http://dx.doi.org/10.1053/j.gastro.2016.02.062] [PMID: 26924087]
[38]
Yaeger R, Shah MA, Miller VA, et al. Genomic Alterations Observed in Colitis-Associated Cancers Are Distinct From Those Found in Sporadic Colorectal Cancers and Vary by Type of Inflammatory Bowel Disease. Gastroenterology 2016; 151(2): 278-287.e6.
[http://dx.doi.org/10.1053/j.gastro.2016.04.001] [PMID: 27063727]
[39]
Harpaz N, Ph D, Ward SC, et al. Precancerous lesions in inflammatory bowel disease 2013; 27: 257-67..
[http://dx.doi.org/10.1016/j.bpg.2013.03.014]
[40]
Suzuki H, Harpaz N, Tannin L, et al. Advances in Brief Microsatellite Instability in Ulcerative Colitis-associated Colorectal Dysplasias and Cancers 1994; 4841-.
[41]
Fassan M, Baffa R, Kiss A. Advanced precancerous lesions within the GI tract: the molecular background. Best Pract Res Clin Gastroenterol 2013; 27(2): 159-69.
[http://dx.doi.org/10.1016/j.bpg.2013.03.009] [PMID: 23809238]
[42]
Fleisher AS, Esteller M, Harpaz N, et al. Microsatellite Instability in Inflammatory Bowel Disease-associated Neoplastic Lesions Is Associated with Hypermethylation and Diminished Expression of the DNA Mismatch Repair Gene , hMLH1 1 2000; (32): 4864-8.
[43]
Sullivan JNO, Bronner MP, Brentnall TA, et al. Chromosomal instability in ulcerative colitis is related to telomere shortening 2002.32(october):280-4.
[44]
Mandelson MT, Potter JD, Bronner MP, Rabinovitch PS. Ulcerative Colitis Is a Disease of Accelerated Colon Aging : Evidence From Telomere Attrition and DNA Damage 2008; 410-8.
[45]
Saraggi D, Fassan M, Mescoli C, et al. The molecular landscape of colitis-associated carcinogenesis. Dig Liver Dis 2017; 49(4): 326-30.
[http://dx.doi.org/10.1016/j.dld.2016.12.011] [PMID: 28089111]
[46]
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33(3S)(Suppl.): 245-54.
[http://dx.doi.org/10.1038/ng1089] [PMID: 12610534]
[47]
Emmett RA, Davidson KL, Gould NJ, Arasaradnam RP. DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review. Epigenomics 2017; 9(7): 1029-42.
[http://dx.doi.org/10.2217/epi-2017-0025] [PMID: 28621161]
[48]
Gerecke C, Scholtka B, Löwenstein Y, et al. Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer. J Cancer Res Clin Oncol 2015; 141(12): 2097-107.
[http://dx.doi.org/10.1007/s00432-015-1972-8] [PMID: 25902909]
[49]
Yuza K, Nagahashi M, Shimada Y, et al. Upregulation of phosphorylated sphingosine kinase 1 expression in colitis-associated cancer. J Surg Res 2018; 231: 323-30.
[http://dx.doi.org/10.1016/j.jss.2018.05.085] [PMID: 30278948]
[50]
Fisher K, Lin J. MicroRNA in inflammatory bowel disease: Translational research and clinical implication. World J Gastroenterol 2015; 21(43): 12274-82.
[http://dx.doi.org/10.3748/wjg.v21.i43.12274] [PMID: 26604636]
[51]
Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 α. Gastroenterology 2008; 135(5): 1624-1635.e24.
[http://dx.doi.org/10.1053/j.gastro.2008.07.068] [PMID: 18835392]
[52]
Feng Y, Dong YW, Song YN, et al. MicroRNA-449a is a potential predictor of colitis-associated colorectal cancer progression. Oncol Rep 2018; 40(3): 1684-94.
[http://dx.doi.org/10.3892/or.2018.6566] [PMID: 30015944]
[53]
Lewis A, Felice C, Kumagai T, et al. The miR-200 family is increased in dysplastic lesions in ulcerative colitis patients. PLoS One 2017; 12(3)e0173664
[http://dx.doi.org/10.1371/journal.pone.0173664] [PMID: 28288169]
[54]
Wang T, Xu X, Xu Q, et al. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops. Oncogene 2017; 36(23): 3240-51.
[http://dx.doi.org/10.1038/onc.2016.468] [PMID: 27991929]
[55]
Toiyama Y, Okugawa Y, Tanaka K, et al. A Panel of Methylated MicroRNA Biomarkers for Identifying High-Risk Patients With Ulcerative Colitis-Associated Colorectal Cancer. Gastroenterology 2017; 153(6): 1634-1646.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.08.037] [PMID: 28847750]
[56]
Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology 2011; 140(6): 1807-16.
[http://dx.doi.org/10.1053/j.gastro.2011.01.057] [PMID: 21530747]
[57]
Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 2004; 287(1): G7-G17.
[http://dx.doi.org/10.1152/ajpgi.00079.2004] [PMID: 15194558]
[58]
Magro F, Driessen A, Villanacci V. The histopathological approach to inflammatory bowel disease: A practice guide Article in Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin • Endoscopic fenestration of espphageal duplication cysts View project Colorectal neoplas 2014; 511-27.
[59]
Nieminen U, Jussila A, Nordling S, Mustonen H, Färkkilä MA. Inflammation and disease duration have a cumulative effect on the risk of dysplasia and carcinoma in IBD: a case-control observational study based on registry data. Int J Cancer 2014; 134(1): 189-96.
[http://dx.doi.org/10.1002/ijc.28346] [PMID: 23797639]
[60]
Matula S, Croog V, Itzkowitz S, et al. Chemoprevention of colorectal neoplasia in ulcerative colitis: the effect of 6-mercaptopurine. Clin Gastroenterol Hepatol 2005; 3(10): 1015-21.
[http://dx.doi.org/10.1016/S1542-3565(05)00738-X] [PMID: 16234048]
[61]
Eaden J. Review article: the data supporting a role for aminosalicylates in the chemoprevention of colorectal cancer in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2003; 18(s2)(Suppl. 2): 15-21.
[http://dx.doi.org/10.1046/j.1365-2036.18.s2.3.x] [PMID: 12950416]
[62]
Kraus S, Inflammation AN, Cancer C. Curr Colorectal Cancer Rep 2017; 13(4): 341-51.
[http://dx.doi.org/10.1007/s11888-017-0373-6] [PMID: 29129972]
[63]
Becker C, Fantini MC, Schramm C, et al. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004; 21(4): 491-501.
[http://dx.doi.org/10.1016/j.immuni.2004.07.020] [PMID: 15485627]
[64]
Mitsuyama K, Matsumoto S, Rose-John S, et al. STAT3 activation via interleukin 6 trans-signalling contributes to ileitis in SAMP1/Yit mice. Gut 2006; 55(9): 1263-9.
[http://dx.doi.org/10.1136/gut.2005.079343] [PMID: 16682432]
[65]
Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15(2): 103-13.
[http://dx.doi.org/10.1016/j.ccr.2009.01.001] [PMID: 19185845]
[66]
Li Y, de Haar C, Chen M, et al. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut 2010; 59(2): 227-35.
[http://dx.doi.org/10.1136/gut.2009.184176] [PMID: 19926618]
[67]
Matsumoto S, Hara T, Mitsuyama K, et al. Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol 2010; 184(3): 1543-51.
[http://dx.doi.org/10.4049/jimmunol.0801217] [PMID: 20042582]
[68]
Agoff SN, Brentnall TA, Crispin DA, et al. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am J Pathol 2000; 157(3): 737-45.
[http://dx.doi.org/10.1016/S0002-9440(10)64587-7] [PMID: 10980113]
[69]
Garrity-Park MM, Loftus EV Jr, Bryant SC, Smyrk TC. A Biomarker Panel to Detect Synchronous Neoplasm in Non-neoplastic Surveillance Biopsies from Patients with Ulcerative Colitis. Inflamm Bowel Dis 2016; 22(7): 1568-74.
[http://dx.doi.org/10.1097/MIB.0000000000000789] [PMID: 27135485]
[70]
Niu W, Wu Z, Wang J, et al. Tumor Necrosis Factor Ligand-Related Molecule 1A Regulates the Occurrence of Colitis-Associated Colorectal Cancer. Dig Dis Sci 2018; 63(9): 2341-50.
[http://dx.doi.org/10.1007/s10620-018-5126-0] [PMID: 29796912]
[71]
Seishima R, Okabayashi K, Nagano O, et al. Sulfasalazine, a therapeutic agent for ulcerative colitis, inhibits the growth of CD44v9(+) cancer stem cells in ulcerative colitis-related cancer. Clin Res Hepatol Gastroenterol 2016; 40(4): 487-93.
[http://dx.doi.org/10.1016/j.clinre.2015.11.007] [PMID: 26775891]
[72]
Hanaoka M, Ishikawa T, Ishiguro M, et al. Expression of ATF6 as a marker of pre-cancerous atypical change in ulcerative colitis-associated colorectal cancer: a potential role in the management of dysplasia. J Gastroenterol 2018; 53(5): 631-41.
[http://dx.doi.org/10.1007/s00535-017-1387-1] [PMID: 28884228]
[73]
Lessel W, Silver A, Jechorek D, et al. Inactivation of JNK2 as carcinogenic factor in colitis-associated and sporadic colorectal carcinogenesis. Carcinogenesis 2017; 38(5): 559-69.
[http://dx.doi.org/10.1093/carcin/bgx032] [PMID: 28383667]
[74]
Koblansky AA, Truax AD, Liu R, et al. The Innate Immune Receptor NLRX1 Functions as a Tumor Suppressor by Reducing Colon Tumorigenesis and Key Tumor-Promoting Signals. Cell Rep 2016; 14(11): 2562-75.
[http://dx.doi.org/10.1016/j.celrep.2016.02.064] [PMID: 26971998]
[75]
Flood B, Oficjalska K, Laukens D, et al. Altered expression of caspases-4 and -5 during inflammatory bowel disease and colorectal cancer: Diagnostic and therapeutic potential. Clin Exp Immunol 2015; 181(1): 39-50.
[http://dx.doi.org/10.1111/cei.12617] [PMID: 25943872]
[76]
Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22(3): 933-48.
[http://dx.doi.org/10.3748/wjg.v22.i3.933] [PMID: 26811638]
[77]
Lee YK, Mehrabian P, Boyajian S, et al. The Protective Role of Bacteroides fragilis in a Murine Model of Colitis-Associated Colorectal Cancer. MSphere 2018; 3(6): 1-11.
[http://dx.doi.org/10.1128/mSphere.00587-18] [PMID: 30429227]
[78]
Brennan CA, Garrett WS. Gut Microbiota, Inflammation, and Colorectal Cancer Caitlin. Annu Rev Microbiol 2017; (9): 395-411.
[http://dx.doi.org/10.1146/annurev-micro-102215-095513.Gut]
[79]
McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther 2018; 47(1): 26-42.
[http://dx.doi.org/10.1111/apt.14384] [PMID: 29034981]
[80]
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 2018; 11(1): 1-10.
[http://dx.doi.org/10.1007/s12328-017-0813-5] [PMID: 29285689]
[81]
Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018; 33(6): 954-64.
[http://dx.doi.org/10.1016/j.ccell.2018.03.004] [PMID: 29657127]
[82]
Cairns SR, Scholefield JH, Steele RJ, et al. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut 2010; 59(5): 666-89.
[http://dx.doi.org/10.1136/gut.2009.179804] [PMID: 20427401]
[83]
Farraye FA, Odze RD, Eaden J, et al. AGA medical position statement on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology 2010; 138(2): 738-45.
[http://dx.doi.org/10.1053/j.gastro.2009.12.037] [PMID: 20141808]
[84]
Ananthakrishnan AN, Cagan A, Cai T, et al. Colonoscopy is associated with a reduced risk for colon cancer and mortality in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2015; 13(2): 322-329.e1.
[http://dx.doi.org/10.1016/j.cgh.2014.07.018] [PMID: 25041865]
[85]
Chen R, Lai LA, Brentnall TA, Pan S. Biomarkers for colitis-associated colorectal cancer. World J Gastroenterol 2016; 22(35): 7882-91.
[http://dx.doi.org/10.3748/wjg.v22.i35.7882] [PMID: 27672285]
[86]
Xie J, Itzkowitz SH. Cancer in inflammatory bowel disease. World J Gastroenterol 2008; 14(3): 378-89.
[http://dx.doi.org/10.3748/wjg.14.378] [PMID: 18200660]
[87]
Ullman T, Odze R, Farraye FA. Diagnosis and management of dysplasia in patients with ulcerative colitis and Crohn’s disease of the colon. Inflamm Bowel Dis 2009; 15(4): 630-8.
[http://dx.doi.org/10.1002/ibd.20766] [PMID: 18942763]
[88]
Cornaggia M, Leutner M, Mescoli C, Sturniolo GC, Gullotta R. Chronic idiopathic inflammatory bowel diseases: the histology report. Dig Liver Dis 2011; 43(Suppl. 4): S293-303.
[http://dx.doi.org/10.1016/S1590-8658(11)60585-9] [PMID: 21459335]
[89]
Allende D, Elmessiry M, Hao W, et al. Inter-observer and intra-observer variability in the diagnosis of dysplasia in patients with inflammatory bowel disease: correlation of pathological and endoscopic findings. Colorectal Dis 2014; 16(9): 710-8.
[http://dx.doi.org/10.1111/codi.12667] [PMID: 24836541]
[90]
Magro F, Langner C, Driessen A, et al. European consensus on the histopathology of inflammatory bowel disease. J Crohn’s Colitis 2013; 7(10): 827-51.
[http://dx.doi.org/10.1016/j.crohns.2013.06.001] [PMID: 23870728]
[91]
Lane ER, Zisman TL, Suskind DL. The microbiota in inflammatory bowel disease: current and therapeutic insights. J Inflamm Res 2017; 10: 63-73.
[http://dx.doi.org/10.2147/JIR.S116088] [PMID: 28652796]
[92]
Kiran RP, Ahmed Ali U, Nisar PJ, et al. Risk and location of cancer in patients with preoperative colitis-associated dysplasia undergoing proctocolectomy. Ann Surg 2014; 259(2): 302-9.
[http://dx.doi.org/10.1097/SLA.0b013e31828e7417] [PMID: 23579580]
[93]
Boyapati RK, Kalla R, Satsangi J, Ho GT. Biomarkers in Search of Precision Medicine in IBD. Am J Gastroenterol 2016; 111(12): 1682-90.
[http://dx.doi.org/10.1038/ajg.2016.441] [PMID: 27670602]
[94]
Iamartino L, Elajnaf T, Kallay E, Schepelmann M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24(36): 4119-31.
[http://dx.doi.org/10.3748/wjg.v24.i36.4119] [PMID: 30271078]
[95]
Toiyama Y, Okugawa Y, Kondo S, et al. Comprehensive analysis identifying aberrant DNA methylation in rectal mucosa from ulcerative colitis patients with neoplasia. Oncotarget 2018; 9(69): 33149-59.
[http://dx.doi.org/10.18632/oncotarget.26032] [PMID: 30237858]
[96]
Beggs AD, James J, Caldwell G, et al. Discovery and validation of methylation biomarkers for ulcerative colitis associated neoplasia. Inflamm Bowel Dis 2018; 24(7): 1503-9.
[http://dx.doi.org/10.1093/ibd/izy119] [PMID: 29762666]
[97]
Parang B, Kaz AM, Barrett CW, et al. BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis. Gut 2017; 66(5): 852-62.
[http://dx.doi.org/10.1136/gutjnl-2015-310255] [PMID: 28389570]
[98]
Kisiel JB, Yab TC, Nazer Hussain FT, et al. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther 2013; 37(5): 546-54.
[http://dx.doi.org/10.1111/apt.12218] [PMID: 23347191]
[99]
Link A, Balaguer F, Shen Y, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 2010; 19(7): 1766-74.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0027] [PMID: 20551304]
[100]
Koga Y, Yasunaga M, Takahashi A, et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila) 2010; 3(11): 1435-42.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0036] [PMID: 20959518]
[101]
Wu CW, Ng SSM, Dong YJ, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 2012; 61(5): 739-45.
[http://dx.doi.org/10.1136/gut.2011.239236] [PMID: 21930727]
[102]
Ahmed FE, Jeffries CD, Vos PW, et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics 2009; 6(5): 281-95.
[PMID: 19996134]
[103]
Uppara M, Adaba F, Askari A, et al. A systematic review and meta-analysis of the diagnostic accuracy of pyruvate kinase M2 isoenzymatic assay in diagnosing colorectal cancer. World J Surg Oncol 2015; 13(1): 48.
[http://dx.doi.org/10.1186/s12957-015-0446-4] [PMID: 25888768]
[104]
Xing PX, Young GP, Ho D, Sinatra MA, Hoj PB, McKenzie IFC. A new approach to fecal occult blood testing based on the detection of haptoglobin. Cancer 1996; 78(1): 48-56.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960701)78:1<48:AID-CNCR9>3.0.CO;2-D] [PMID: 8646726]
[105]
Johnson DH, Taylor WR, Aboelsoud MM, et al. DNA Methylation and Mutation of Small Colonic Neoplasms in Ulcerative Colitis and Crohn’s Colitis: Implications for Surveillance. Inflamm Bowel Dis 2016; 22(7): 1559-67.
[http://dx.doi.org/10.1097/MIB.0000000000000795] [PMID: 27104828]
[106]
Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon tumorigenesis. MBio 2013; 4(6): e00692-13.
[http://dx.doi.org/10.1128/mBio.00692-13] [PMID: 24194538]
[107]
Jahani-Sherafat S, Alebouyeh M, Moghim S, Amoli HA, Ghasemian-Safaei H. Gastroenterology and Hepatology From Bed to Bench. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Hepatol Bed Bench 2018; 11(2): 101-9.
[108]
Yusuf F, Ilyas S, Damanik HAR, Fatchiyah F. Microbiota Composition, HSP70 and Caspase-3 Expression as Marker for Colorectal Cancer Patients in Aceh, Indonesia. Acta Med Indones 2016; 48(4): 289-99.http://www.ncbi.nlm.nih.gov/pubmed/28143990
[PMID: 28143990]
[109]
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 2017; 23(8): 2061-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1599] [PMID: 27697996]
[110]
Zackular JP, Rogers MAM, Ruffin MT IV, Schloss PD. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila) 2014; 7(11): 1112-21.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0129] [PMID: 25104642]
[111]
Rozalski R, Gackowski D, Siomek-Gorecka A, et al. Urinary 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine as potential biomarkers in patients with colorectal cancer. Biomarkers 2015; 20(5): 287-91.
[http://dx.doi.org/10.3109/1354750X.2015.1068860] [PMID: 26329524]
[112]
Han J, Jackson D, Holm J, et al. Elevated d-2-hydroxyglutarate during colitis drives progression to colorectal cancer. Proc Natl Acad Sci USA 2018; 115(5): 1057-62.
[http://dx.doi.org/10.1073/pnas.1712625115] [PMID: 29339485]
[113]
Arai Y, Matsuura T, Matsuura M, et al. Prostaglandin E-Major Urinary Metabolite as a Biomarker for Inflammation in Ulcerative Colitis: Prostaglandins Revisited. Digestion 2016; 93(1): 32-9.
[http://dx.doi.org/10.1159/000441665] [PMID: 26788915]
[114]
Bhattacharyya D, Kumar P, Mohanty SK, Smith YR, Misra M. Detection of four distinct volatile indicators of colorectal cancer using functionalized titania nanotubular arrays. Sensors (Basel) 2017; 17(8)E1795
[http://dx.doi.org/10.3390/s17081795] [PMID: 28777343]
[115]
Wiggins T, Paraskeva P, Markar SR, et al. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-Tube Mass Spectrometry. Ann Surg 2017; 1.
[116]
G W Early detection of colorectal cancer using breath biomarkers: Preliminary study ESMO 2018.528P.. https://www.esmo.org/Conferences/Past-Conferences/ESMO-2018-Congress/Abstracts
[117]
Yoshizawa S, Matsuoka K, Inoue N, et al. Clinical significance of serum p53 antibodies in patients with ulcerative colitis and its carcinogenesis. Inflamm Bowel Dis 2007; 13(7): 865-73.
[http://dx.doi.org/10.1002/ibd.20112] [PMID: 17285596]
[118]
Patel M, Verma A, Aslam I, Pringle H, Singh B. Novel plasma microRNA biomarkers for the identification of colitis-associated carcinoma. Lancet 2015; 385(Suppl. 1): S78.
[http://dx.doi.org/10.1016/S0140-6736(15)60393-2] [PMID: 26312900]
[119]
Benderska N, Dittrich AL, Knaup S, et al. MiRNA-26b overexpression in ulcerative colitis-associated carcinogenesis. Inflamm Bowel Dis 2015; 21(9): 2039-51.
[http://dx.doi.org/10.1097/MIB.0000000000000453] [PMID: 26083618]
[120]
Ananthakrishnan AN, Cheng SC, Cai T, et al. Serum inflammatory markers and risk of colorectal cancer in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 2014; 12(8): 1342-8.e1.
[http://dx.doi.org/10.1016/j.cgh.2013.12.030] [PMID: 24407106]
[121]
Koutroubakis IE, Regueiro M, Schoen RE, et al. Multiyear patterns of serum inflammatory biomarkers and risk of colorectal neoplasia in patients with ulcerative colitis. Inflamm Bowel Dis 2016; 22(1): 100-5.
[http://dx.doi.org/10.1097/MIB.0000000000000587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy