Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Current Progress in the Multicomponent Catalytic Synthesis of Amidoalkyl- Naphthols: An Update

Author(s): Rajesh K. Singh*, Ashima Dhiman, Shallu Chaudhary, Deo Nandan Prasad and Sahil Kumar

Volume 24, Issue 5, 2020

Page: [487 - 515] Pages: 29

DOI: 10.2174/1385272822666200217100344

Price: $65

Abstract

Amidoalkyl-2-naphthol is one of the vital synthetic intermediates which occupy an imperative position in medicinal chemistry due to its amazing biological, pharmacological as well as industrial and synthetic applications. Owing to its diverse pharmaceutical activities, hundreds of scientific literature are available, signifying the efficient synthesis of this intermediate using various catalysts. Most of these literature methods suffer from low yield and harsh reaction conditions that further ignited the researcher to explore for another green catalyst and fresh methodologies. This review summarizes the last five years progress in the catalytic synthesis of 1-amidoalkyl-2-naphthols using various heterogenous, homogenous and nanocatalysts along with their mechanism of action. Various advantages like green synthesis, atom economy, clean reaction profile and catalyst recovery are discussed which facilitate the scientist to probe and stimulate the study on this scaffold. In the end, the catalysts and reactions condition are organized into the tables for swift at a glance understanding of different catalysts used with their yield and time taken for the synthesis.

Keywords: Amidoalkyl-naphthol, green catalyst, heterogenous catalyst, homogenous catalyst, nanocatalyst, multicomponent reactions.

Graphical Abstract

[1]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and practice; Oxford University Press: New York, 1998.
[2]
Lancaster, M. Green Chemistry: An Introductory Text; The Royal Society of Chemistry: London, 2002.
[3]
Anastas, P.T.; Williamson, T.C.; Hjeresen, D.; Breen, J.J. Peer reviewed: promoting green chemistry initiatives. Environ. Sci. Technol., 1999, 33(5), 116A-119A.
[http://dx.doi.org/10.1021/es992685c] [PMID: 21657757]
[4]
Khanna, P.; Khanna, L.; Thomas, S.J.; Asiri, A.M.; Panda, Si. S. Microwave assisted synthesis of spirohetreocyclic systems: a review. Curr. Org. Chem., 2018, 22(1), 67-84.
[http://dx.doi.org/10.2174/1385272821666170818161517]
[5]
Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis- a review. Tetrahedron, 2001, 57, 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[6]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[7]
Paul, T.A.; Irvin, J.L.; Kathryn, E.P. Green chemistry education: changing the course of chemistry; Oxford Univ. Press: USA, 2009.
[8]
Kidway, M. Dry media reactions. Pure Appl. Chem., 2001, 73(1), 147-151.
[http://dx.doi.org/10.1351/pac200173010147]
[9]
Bakhtiari, A.; Berberashvili, T.; Kervalishvili, P. Water treatment improvement by ultrasonic approach. American J. Cond. Matt Phy., 2017, 7(4), 81-86.
[10]
Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev., 1997, 26, 443.
[http://dx.doi.org/10.1039/cs9972600443]
[11]
Bharti, R.; Kumari, P.; Parvin, T.; Choudhary, L.H. Recent advances of aminopyrimidines in multicomponent reactions. Curr. Org. Chem., 2018, 22(5), 417-445.
[http://dx.doi.org/10.2174/1385272822666171212152406]
[12]
Yeganeh, S.M.; Abbasi, F.; Kazemizadeh, R.A. Recent advances in the synthesis of ferrocene-based heterocycles by multicomponent reactions: a review. Curr. Org. Chem., 2018, 22(26), 2555-2575.
[http://dx.doi.org/10.2174/1385272822666181109102607]
[13]
Singh, R.K.; Sharda, S.; Sharma, S.; Kumar, S.; Prasad, D.N. Multicomponent catalytic synthesis of 1,5-benzodiazepines: an update. Mini Rev. Org. Chem., 2019, 16, 1-19.
[http://dx.doi.org/10.2174/1570193X16666190509074109]
[14]
Kumari, A.; Singh, R.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg. Chem., 2020, 96 103578
[http://dx.doi.org/10.1016/j.bioorg.2020.103578] [PMID: 31978684]
[15]
Sethi, N.; Prasad, D.N.; Singh, R.K. An insight into the synthesis and structure- activity relationship (SAR) of 2,4-thiazolidinedione (2,4-TZD): a review. Mini-Reviews in Med. Chem., 2019. [E-pub a head of print].
[http://dx.doi.org/10.2174/1389557519666191029102838] [PMID: 31660809]
[16]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89 103021
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[17]
Fardpour, M.; Shafie, A.; Bahadorikhalili, S.; Larijani, B.; Mahdavi, M. Utilizing amines and carbon disulfide to obtain nitrogen and sulfur-containing compounds under green conditions: a review. Curr. Org. Chem., 2018, 22(24), 2315-2380.
[http://dx.doi.org/10.2174/1385272822666181029113222]
[18]
Singh, R.K.; Bala, R.; Kumar, S. Microwave assisted facile synthesis of 1-amidoalkyl-2-naphthols catalyzed by stannous oxide nanoparticles. J. Indian Chem. Soc., 2015, 92(7), 1161-1165.
[19]
Li, T.; Zhai, X.; Singh, D.; Singh, R.K.; Xu, X. Multicomponent one-pot green synthesis of 1-amidoalkyl-2-naphthols promoted by PNBA under solvent-free condition. Asian J. Chem., 2014, 26(16), 5207-5211.
[http://dx.doi.org/10.14233/ajchem.2014.16707]
[20]
Maleki, A.; Aghaei, M.; Ghamari, N. Synthesis of benzimidazolo [2,3-b] quinazolinone derivatives via a one-pot multicomponent reaction promoted by a chitosan-based composite magnetic nanocatalyst. Chem. Lett., 2015, 44(3), 259-261.
[http://dx.doi.org/10.1246/cl.141074]
[21]
Shaabani, A.; Maleki, A. Green and efficient synthesis of quinoxaline derivatives via ceric ammonium nitrate promoted and in situ aerobic oxidation of α-hydroxy ketones and α-keto oximes in aqueous media. Chem. Pharm. Bull. (Tokyo), 2008, 56(1), 79-81.
[http://dx.doi.org/10.1248/cpb.56.79] [PMID: 18175980]
[22]
Maleki, A.; Akhlaghi, E.; Paydar, R. Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three component synthesis of α-aminonitriles. Appl. Organomet. Chem., 2016, 30, 382-386.
[http://dx.doi.org/10.1002/aoc.3443]
[23]
Maleki, A.; Hajizadeh, Z.; Haji, R.F. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater., 2018, 259, 46-53.
[http://dx.doi.org/10.1016/j.micromeso.2017.09.034]
[24]
Shaabani, A.; Soleimani, E.; Maleki, A. One-Pot three-component synthesis of 3-aminoimidazo[1,2-a]pyridines and -pyrazines in the presence of silica sulfuric acid. Monatsh. Chem., 2007, 138, 73-76.
[http://dx.doi.org/10.1007/s00706-006-0561-6]
[25]
Maleki, A.; Aghaei, M.; Ghamri, N. Facile synthesis of tetrahydrobenzoxanthenones via a one-pot three-component reaction using an eco-friendly and magnetized biopolymer chitosan-based heterogeneous nanocatalyst. Appl. Organomet. Chem., 2016, 30, 939-942.
[http://dx.doi.org/10.1002/aoc.3524]
[26]
Maleki, A.; Aghaei, M.; Atabak, H.R.H.; Ferdowsi, M. Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason. Sonochem., 2017, 37, 260-266.
[http://dx.doi.org/10.1016/j.ultsonch.2017.01.022] [PMID: 28427632]
[27]
Shaabani, A.; Seyyedhamzeh, M.; Maleki, A.; Behnam, M.; Rezazadeh, F. Synthesis of fully substituted pyrazolo [3,4-b] pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett., 2009, 50, 2911-2913.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.200]
[28]
Maleki, A.; Kamalzare, M. An efficient synthesis of benzodiazepine derivatives via a one-pot three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett., 2014, 55, 6931-6934.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.120]
[29]
Knapp, S. Synthesis of complex nucleosides. Chem. Rev., 1995, 1859-1876.
[http://dx.doi.org/10.1021/cr00038a006]
[30]
Dingermann, T.; Steinhilber, D.; Folkers, G. Molecular Biology in Medicinal Chemistry., Wiley-VCH: Weinheim. Vol. 21 2004.,
[31]
Shen, A.Y.; Tsai, C.T.; Chen, C.L. Synthesis and cardiovascular evaluation of N-substituted 1- aminomethyl-2-naphthols. Eur. J. Med. Chem., 1999, 34, 877-882.
[http://dx.doi.org/10.1016/S0223-5234(99)00204-4]
[32]
Hulst, R.; Heres, H.; Peper, N.C.M.W.; Kellogg, R.M. Synthesis and application of new chiral ligands for the asymmetric borane reduction of prochiral ketones. Tetrahedron Asymmetry, 1996, 7, 1373-1384.
[http://dx.doi.org/10.1016/0957-4166(96)00154-1]
[33]
Li, X.; Yeung, C.H.; Chan, A.S.C.; Yang, T.K. New 1,3-amino alcohols derived from ketopinic acid and their application in catalytic enantioselective reduction of prochiral ketones. Tetrahedron Asymmetry, 1999, 10, 759-763.
[http://dx.doi.org/10.1016/S0957-4166(99)00043-9]
[34]
Damodiran, M. PaneerSelvam, N.; Perumal, P.T. Synthesis of highly functionalised oxazines by vilsmeier cyclization of amidoalkyl-naphthols. Tetrahedron Lett., 2009, 50, 5474-5478.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.051]
[35]
Matsuoka, H.; Ohi, N.; Mihara, M.; Suzuki, H.; Miyamoto, K.; Maruyama, N.; Tsuji, K.; Kato, N.; Akimoto, T.; Takeda, Y.; Yano, K.; Kuroki, T. Antirheumatic agents: novel methotrexate derivatives bearing a benzoxazine or benzothiazine moiety. J. Med. Chem., 1997, 40(1), 105-111.
[http://dx.doi.org/10.1021/jm9605288] [PMID: 9016334]
[36]
Kusakabe, Y.; Nagatsu, J.; Shibuya, M.; Kawaguchi, O.; Hirose, C.; Shirato, S. Minimycin, a new antibiotic. J. Antibiot. (Tokyo), 1972, 25(1), 44-47.
[http://dx.doi.org/10.7164/antibiotics.25.44] [PMID: 5010645]
[37]
Chylińska, J.B.; Urbański, T.; Mordarski, M. Dihydro-1,3-oxazine derivatives and their antitumor activity. J. Med. Chem., 1963, 6(5), 484-487.
[http://dx.doi.org/10.1021/jm00341a004] [PMID: 14173566]
[38]
Peglion, J.L.; Vian, J.; Gourment, B.; Despaux, N.; Audinot, V.; Millan, M. Tetracyclic analogues of [+]-S 14297: synthesis and determination of affinity and selectivity at cloned human dopamine D3 vs D2 receptors. Bioorg. Med. Chem. Lett., 1997, 7, 881-886.
[http://dx.doi.org/10.1016/S0960-894X(97)00126-1]
[39]
Ren, H.; Grady, S.; Gamenara, D.; Heinzen, H.; Moyna, P.; Croft, S.L.; Kendrick, H.; Yardley, V.; Moyna, G. Design, synthesis, and biological evaluation of a series of simple and novel potential antimalarial compounds. Bioorg. Med. Chem. Lett., 2001, 11(14), 1851-1854.
[http://dx.doi.org/10.1016/S0960-894X(01)00308-0] [PMID: 11459645]
[40]
Benedini, F.; Bertolini, G.; Cereda, R.; Donà, G.; Gromo, G.; Levi, S.; Mizrahi, J.; Sala, A. New antianginal nitro esters with reduced hypotensive activity. Synthesis and pharmacological evaluation of 3-[(nitrooxy)alkyl]-2H-1,3-benzoxazin-4(3H)-ones. J. Med. Chem., 1995, 38(1), 130-136.
[http://dx.doi.org/10.1021/jm00001a018] [PMID: 7837224]
[41]
Lesher, G.Y.; Surrey, A.R. A new method for the preparation of 3-substituted-2-oxazolidones. J. Am. Chem. Soc., 1955, 77, 636-641.
[http://dx.doi.org/10.1021/ja01608a032]
[42]
Mosher, H.S.; Frankel, M.B.; Gregory, M. Heterocyclic diphenylmethane derivatives. J. Am. Chem. Soc., 1953, 75, 5326-5328.
[http://dx.doi.org/10.1021/ja01117a054]
[43]
Clark, R.D.; Caroon, J.M.; Kluge, A.F.; Repke, D.B.; Roszkowski, A.P.; Strosberg, A.M.; Baker, S.; Bitter, S.M.; Okada, M.D. Synthesis and antihypertensive activity of 4′-substituted spiro[4H-3,1-benzoxazine-4,4′-piperidin]-2(1H)-ones. J. Med. Chem., 1983, 26(5), 657-661.
[http://dx.doi.org/10.1021/jm00359a007] [PMID: 6842505]
[44]
Chylińska, J.B.; Janowiec, M.; Urbański, T. Antibacterial activity of dihydro-1,3-oxazine derivatives condensed with aromatic rings in positions 5,6. Br. J. Pharmacol., 1971, 43(3), 649-657.
[http://dx.doi.org/10.1111/j.1476-5381.1971.tb07194.x] [PMID: 5003353]
[45]
Kerdesky, F.A.J.A. Novel and efficient method for the conversion of a trans-hexahydronaphthoxazine to a cis-isomer using boron tribromide. Tetrahedron Lett., 2005, 46, 1711-1712.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.048]
[46]
Dharshini, K.P.; Devi, D.R.; Hari, B.N. Effect of nanotechnology approaches on anti-retroviral molecule: Efavirenz. Curr. Org. Chem., 2018, 22(27), 2634-2643.
[http://dx.doi.org/10.2174/1385272822666181116122616]
[47]
Vrouenraets, S.M.; Wit, F.W.; van Tongeren, J.; Lange, J.M. Efavirenz: a review. Expert Opin. Pharmacother., 2007, 8(6), 851-871.
[http://dx.doi.org/10.1517/14656566.8.6.851] [PMID: 17425480]
[48]
Joyce, J.N.; Presgraves, S.; Renish, L.; Borwege, S.; Osredkar, T.; Hagner, D.; Replogle, M.; PazSoldan, M.; Millan, M.J. Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4-phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a comparison to ropinirole. Exp. Neurol., 2003, 184(1), 393-407.
[http://dx.doi.org/10.1016/S0014-4886(03)00353-4] [PMID: 14637109]
[49]
Singh, R.K.; Bala, R.; Duvedi, R.; Kumar, S. Recent advances in one-pot multicomponent catalytic synthesis of 1-amidoalkyl-2-naphthols. Iranian J. Catal., 2015, 5(3), 187-206.
[50]
Kobayashi, S.; Manabe, K. Development of novel Lewis acid catalysts for selective organic reactions in aqueous media. Acc. Chem. Res., 2002, 35(4), 209-217.
[http://dx.doi.org/10.1021/ar000145a] [PMID: 11955049]
[51]
Khazdooz, L.; Zarei, A.; Hajipour, A.R.; Sheikhan, N. A study for the synthesis of dibenzo [a, j] xanthenes and 1-amidoalkyl-2-naphthols catalyzed by [Hmim][HSO4] as a green, efficient and reusable catalyst under solvent-free conditions. Iran. J. Catal., 2011, 1, 1-9.
[52]
Yamamoto, H. From designer Lewis acid to designer Brønsted acid towards more reactive and selective acid catalysis. Proc. Japan. Acad., Ser. B, Phys. Biol. Sci., 2008, 84(5), 134-146.
[http://dx.doi.org/10.2183/pjab.84.134] [PMID: 18941293]
[53]
Yamamoto, H. Lewis acids in organic synthesis; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527618309]
[54]
Wang, M.; Liang, Y. Solvent-free, one-pot synthesis of 1-amidoalkyl-2-naphthols by a copper p-toluenesulfonatecatalyzed multicomponent reaction. Monatsh. Chem., 2011, 142(2), 153-157.
[http://dx.doi.org/10.1007/s00706-010-0429-7]
[55]
Wang, M.; Song, Z.G.; Liang, Y. One-pot synthesis of 1-amidoalkyl-2-naphthols from 2-naphthol, aldehydes and amides under solvent-free conditions. Org. Prep. Proced. Int., 2011, 43, 484-488.
[http://dx.doi.org/10.1080/00304948.2011.613700]
[56]
Wang, M.; Liang, Y.; Zhang, T.T.; Gao, J.J. Three-component synthesis of 1-amidoalkyl-2-naphthols catalyzed by bismuth(III) nitrate pentahydrate. Chin. Chem. Lett., 2012, 23, 65-68.
[http://dx.doi.org/10.1016/j.cclet.2011.10.008]
[57]
Oskooie, H.A.; Heravi, M.M.; Karimi, N.; Amouchi, A.; Kohansal, G. KAl(SO4)2.12H2O as a recyclable Lewis acid catalyst for synthesis of some 1-amidoalkyl-2-naphthols under solvent-free conditions. Synth. Commun., 2012, 42(1), 109-113.
[http://dx.doi.org/10.1080/00397911.2010.522754]
[58]
Wang, M.; Song, Z.G. Zinc benzenesulfonate–promoted eco-friendly and efficient synthesis of 1-amidoalkyl-2-naphthols. Synth. Commun., 2012, 42(4), 582-585.
[http://dx.doi.org/10.1080/00397911.2010.527424]
[59]
Wang, M.; Liang, Y.; Zhang, T.T.; Gao, J.J. Synthesis of 1-amidoalkyl-2-naphthols via three-component condensation of 2-naphthol, aldehydes, and amides/urea. Chem. Nat. Compd., 2012, 48(2), 1-4.
[http://dx.doi.org/10.1007/s10600-012-0200-x]
[60]
Zhu, X.; Lee, Y.R.; Kim, S.H. Facile one-pot synthesis of 1-amidoalkyl-2-naphthols by RuCl2(PPh3)3-catalyzed multicomponent reactions. Bull. Korean Chem. Soc., 2012, 33(8), 2799-2802.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2799]
[61]
Ashalu, K.C.; Rao, J.N. MgSO4 catalysed one-pot multicomponent reaction: synthesis of 1-amidoalkyl-2-naphthols. J. Chem. Pharm. Res., 2013, 5(2), 44-47.
[62]
Hashemi, H.; Sardarian, A.R. Zirconyl triflate as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free condition. J. Iran. Chem. Soc., 2013, 10(4), 745-750.
[http://dx.doi.org/10.1007/s13738-012-0208-y]
[63]
Malik, S. Sumit; Singh, R.K. Microwave assisted synthesis of 1-amidoalkyl-2-naphthols catalyzed by anhydrous zinc chloride. Asian J. Chem., 2012, 24(12), 5669-5672.
[64]
Amrollahi, M.A.; Mirjalili, B.B.F.; Emtiazi, H. Mg(ClO4)2 catalysed preparation of 1-amidoalkyl-2-naphthols under solvent-free condition. J. Chem. Sci., 2013, 125(3), 561-566.
[http://dx.doi.org/10.1007/s12039-013-0406-x]
[65]
Soleimani, E.; Zainali, M. Tetrakis(acetonitrile)copper(I) hexafluorophosphate-promoted efficient synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Synth. Commun., 2012, 42(13), 1885-1889.
[http://dx.doi.org/10.1080/00397911.2010.545497]
[66]
Said, S.B.; Mashaly, M.A.M.; Sheta, M.A.; Elmorsy, S.S. New method for preparation of 1-amidoalkyl-2-naphthols via multicomponent condensation reaction utilizing tetrachlorosilane under solvent free conditions. Int. J. Org. Chem. (Irvine), 2015, 5, 191-199.
[http://dx.doi.org/10.4236/ijoc.2015.53019]
[67]
Maleki, B.; Taimazi, F. One-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Org. Prep. Proced. Int., 2014, 46, 252-260.
[http://dx.doi.org/10.1080/00304948.2014.903143]
[68]
Mahdipour, M.; Khabazzadeh, H.; Kermani, E.T. Efficient synthesis of dihydropyrimidine and amidoalkyl naphthol derivatives using zinc chloride-based deep eutectic systems as solvent & catalyst. J. Sci., 2016, 27(2), 119-127.
[69]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, S.P.N. ZrOCl2.8H2O: an efficient and recyclable catalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. J. Saudi Chem. Soc., 2016, 20, 138-150.
[http://dx.doi.org/10.1016/j.jscs.2012.06.003]
[70]
Chaudhari, B.R. Aluminium sulphate in PEG as a green recyclable homogenous catalytic system of synthesis of amidoalkyl-naphthols. J. Chem. Pharm. Res., 2017, 4(1), 462-467.
[71]
Deepam, A.; Vishwanadhan, J. Green protocols for the one-pot synthesis of vanillin based aminoalkyl and 1-amidoalkyl-2-naphthols and their antibacterial activity. Orient. J. Chem., 2017, 33(3), 1354-1365.
[http://dx.doi.org/10.13005/ojc/330336]
[72]
Ahmad Reza, M.Z.; Zolfigol, M.A.; Fateme, D.P.; Saeed, B. Synthesis and characterization of 4,4′-bipyridinium sulfonic acid chloride as a new and efficient catalyst for the prepration of amidoalkyl phenols and bis amido alkyl phenols. Mol. Catal., 2018, 449, 142-151.
[http://dx.doi.org/10.1016/j.mcat.2017.09.037]
[73]
Bronsted, J.N. Acid and base catalysis. Chem. Rev., 1928, 53, 231-338.
[http://dx.doi.org/10.1021/cr60019a001]
[74]
Akiyama, T.; Mori, K. Stronger brønsted acids: recent progress. Chem. Rev., 2015, 115(17), 9277-9306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00041] [PMID: 26182163]
[75]
Cai, X.H.; Guo, H.; Xie, B. One-pot multicomponent synthesis of 1-amidoalkyl-2-naphthols with potassium hydrogen sulfate as catalyst under solvent-free condition. Jordon J. Chem., 2011, 6(1), 17-20.
[76]
Khazdooz, L.; Zarei, A.; Hajipour, A.R.; Sheikhan, N. A study for the synthesis of dibenzo [a, j] xanthenes and 1-amidoalkyl-2-naphthols catalyzed by [Hmim][HSO4] as a green, efficient and reusable catalyst under solvent-free conditions. Iran. J. Catal., 2011, 1, 1-9.
[77]
Niralwad, K.S.; Shingate, B.B.; Shingare, S. 1-Hexanesulphonic acid sodium salt promoted the one-pot synthesis of 1-amidoalkyl-2-naphthols under microwave-irradiation. Chin. Chem. Lett., 2011, 22(5), 551-554.
[http://dx.doi.org/10.1016/j.cclet.2010.11.018]
[78]
Nagarapu, L.; Baseeruddin, M.; Apuri, S.; Katevari, S. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40.3H2O): a mild and efficient reusable catalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-free conditions. Catal. Commun., 2007, 8, 1729-1734.
[http://dx.doi.org/10.1016/j.catcom.2007.02.008]
[79]
Ghorbani-Vaghei, R.; Malaekehpour, S.M. Efficient and solvent-free synthesis of 1-amidoalkyl-2-naphthols using N,N,N′,N′-terabromobenzene-1,3-disulfonamide. Cent. Eur. J. Chem., 2010, 8(5), 1086-1089.
[80]
Bamoharram, F.F.; Heravi, M.M.; Roshani, M.; Charkhi, M.J.S. Multicomponent solvent-free synthesis of amidoalkyl-2-naphthols in the presence of H3. J. Chem., 2011, 8(2), 523-528.
[http://dx.doi.org/10.1155/2011/954616]
[81]
Kiasat, A.R.; Mouradzadegun, A.; Saghanezhad, S.J. Poly(4-vinylpyridinium butane sulfonic acid) hydrogen sulphate: an efficient, heterogenous poly(ionic liquid), solid acid catalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols and substituted quinolines under solvent-free conditions. Chin. J. Catal., 2013, 34, 1861-1868.
[http://dx.doi.org/10.1016/S1872-2067(12)60659-7]
[82]
Zandi, M.; Sardarian, A.R. Eco-friendly and efficient multicomponent method for preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions by Dodecylphosphonic Acid (DPA). C. R. Chim., 2012, 15(4), 365-369.
[http://dx.doi.org/10.1016/j.crci.2011.11.012]
[83]
Eshghi, H.; Zohuri, G.H.; Damavandi, S. Synthesis of novel thioamidoalkyl and thiocarb1-amidoalkyl-2-naphthols via a three-component condensation reaction using heterogenous catalyst of ferric hydrogensulfate. Synth. Commun., 2012, 42(4), 516-525.
[http://dx.doi.org/10.1080/00397911.2010.526281]
[84]
Hadi, J.; Hassan, M. One-pot synthesis of 1-amidoalkyl-2-naphthols using POCl3/Na2B4O7 as a heterogenous catalyst. Lett. Org. Chem., 2012, 9(4), 273-275.
[http://dx.doi.org/10.2174/157017812800233796]
[85]
Deshmukh, K.M.; Qureshi, Z.S.; Patil, Y.P.; Bhanage, B.M. Ionic liquid NMP+HSO4-: an efficient and recyclable catalyst for the synthesis of 1-amidoalkyl-2-naphthols and 1-carbamatoalkyl-2-naphthols under solvent-free conditions. Synth. Commun., 2012, 42(1), 93-101.
[http://dx.doi.org/10.1080/00397911.2010.522293]
[86]
Shahrisa, A.; Esmati, S.; Nazari, G. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthol under solvent free conditions. J. Chem. Sci., 2012, 124(4), 927-931.
[http://dx.doi.org/10.1007/s12039-012-0285-6]
[87]
Mulla, S.A.R.; Salama, T.A.; Pathan, M.Y.; Inamdar, S.M.; Chavan, S.S. Solvent-free high efficient one-pot multicomponent synthesis of 1-amido and 1-carbamato-alkyl naphthols/phenols catalyzed by ethylammonium nitrate as reusable ionic liquid under neat reaction condition at ambient temperature. Tetrahedron Lett., 2013, 54(7), 672-675.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.004]
[88]
Supale, A.R.; Gokavi, G.S. An environmentally benign three component one-pot synthesis of amidoalkylnaphthols using H4SiW12O40 as a recyclable catalyst. J. Chem. Sci., 2010, 122(2), 189-192.
[http://dx.doi.org/10.1007/s12039-010-0021-z]
[89]
Hazeri, N.; Maghsoodlou, M.T.; Khorassani, S.M.H.; Aboonajmi, J.; Safarzaei, M. A green protocol for one-pot three-component synthesis of 1-amidoalkyl-2-naphthols catalysed by succinic acid. Chem. Sci. Trans., 2013, 2(1), 330-336.
[90]
Duvedi, R.; Singh, R.K. Environment friendly, efficient chloroacetic acid promoted synthesis of 1-amidoalkyl-2-naphthols under neat condition. Asian J. Chem., 2012, 24(12), 5665-5668.
[91]
Khaksar, S.; Najafi, R.; Ostad, S.M.; Tajbakhsh, M. An economically and environmentally sustainable synthesis of 1-amidoalkyl-2-naphthols using Pentaflurophenylammonium triflate (PFPAT) as a new organocatalyst. World Appl. Sci. J., 2012, 20(5), 656-660.
[92]
Singh, R.K.; Singh, B.; Duvedi, R.; Kumar, S. Sulfanilic acid: a versatile and efficient catalyst among various organoacids screened for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Res. Chem. Intermed., 2014, 41(7), 4083-4099.
[http://dx.doi.org/10.1007/s11164-013-1513-5]
[93]
Li, T.; Zhai, X.; Singh, D.; Singh, R.K.; Xu, X. Multicomponent one-pot green synthesis of 1-amidoalkyl-2-naphthols promoted by p-nitrobenzoic acid under solvent-free conditions. Asian J. Chem., 2014, 26(16), 5207-5211.
[http://dx.doi.org/10.14233/ajchem.2014.16707]
[94]
Shaikh, A.K.; Chaudhari, U.V.; Ningdale, V.B. Citric acid catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free condition: an eco-friendly protocol. IOSR- J. App. Chem., 2014, 90-93.
[95]
Kiyani, H.; Darbandi, H.; Mosallanezhad, A.; Ghorbani, F. 2-Hydroxy-5-sulfobenzoic acid: an efficientorganocatalyst for the three-component synthesisof 1-amidoalkyl-2-naphthols and 3,4-disubstitutedisoxazol-5(4H)-ones. Res. Chem. Intermed., 2015, 41, 7561-7579.
[http://dx.doi.org/10.1007/s11164-014-1844-x]
[96]
Chinnappan, A.; Jadhav, A.H.; Chung, W.J.; Kim, H. Synthesis of 1-amidoalkyl 2-naphthols using ionic liquid with metal complex as an efficient and reusable catalyst under solvent free conditions. J. Mol. Liq., 2015, 212, 413-417.
[http://dx.doi.org/10.1016/j.molliq.2015.09.041]
[97]
Motamedi, A.A.; Barani, K.K. Lactic acid as an efficient catalyst for the onepot three-component synthesis of 1-amidoalkyl-2-naphthols under thermal solvent-free conditions. Iran. J. Catal., 2015, 339-343. [Epub ahead of print].
[98]
Saghanezhad, S.J.; Sayahi, M.H.; Imanifar, I.; Mombeni, M. Hamood, S.D. Caffeine-H3PO4: a novel acidic catalyst for various one-pot multicomponent reactions. Res. Chem. Intermed., 2017, 43(10), 1-16.
[99]
Kiyani, H.; Darbandi, H. One-pot three-component synthesis of 1-amidoalkyl-2-naphthols in the presence of phthalimide-n-sulfonic acid. Bulg. Chem. Commun, 2017, 49(3), 562-568.
[100]
Khazaei, A.; Moosavi-Zare, A.R.; Firoozmand, S.; Khodadadian, R.S. Synthesis, characterization and application of 3-methyl-1-sulfonic acid imidazolium tetrachloroferrate as nanostructured catalyst for the tandem reaction of β-naphthol with aromatic aldehydes and amide derivatives. Appl. Organomet. Chem., 32(2) e4058
[http://dx.doi.org/10.1002/aoc.4058]
[101]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[102]
Lei, Z.; Chen, B.; Koo, Y-M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev., 2017, 117(10), 6633-6635.
[http://dx.doi.org/10.1021/acs.chemrev.7b00246] [PMID: 28535681]
[103]
Guo, F.; Zhang, S.; Wang, J.; Teng, B.; Zhang, T.; Fan, M. Synthesis and applications of ionic liquids in clean energy and environment: a review. Curr. Org. Chem., 2015, 19(5), 455-468.
[http://dx.doi.org/10.2174/1385272819666150114235649]
[104]
Dong, B.; Song, H.; Zhang, W.; He, A.; Yao, S. Ionic liquids as heterogeneous and homogeneous catalysts for condensation and esterification reactions. Curr. Org. Chem., 2016, 20(27), 2894-2910.
[http://dx.doi.org/10.2174/1385272820666160902150343]
[105]
Vekariya, R.L. A review of ionic liquids: applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[106]
Zolfigol, M.A.; Khazaei, A.; Zare, A.R.M.; Zare, A.; Khakyzadeh, V. Rapid synthesis of 1-amidoalkyl-2-naphthols over sulfonic acid functionalized imidazolium salts. Appl. Catal. A Gen., 2011, 400(1-2), 70-81.
[http://dx.doi.org/10.1016/j.apcata.2011.04.013]
[107]
Dehghan, M.; Davoodina, A.; Bozorgmehr, M.R.; Hoseini, N.T. Another application of newly prepared Bronsted-acidic ionic liquids as highly efficient reusable catalysts for neat synthesis of amidoalkyl-naphthols. Cogent Chemistry, 2017, 3(1) 1312675
[http://dx.doi.org/10.1080/23312009.2017.1312675]
[108]
Bahrami, S.; Jamehbozorgi, S.; Moradi, S. Ebrahimi.S. Synthesis of 1-amidoalkyl-2- naphthol derivatives using a magnetic nano- Fe3O4@SiO2 Hexamethylenetetramine-supported ionic liquid as a catalyst under solvent-free conditions. J. Chin. Chem. Soc. (Taipei), 2019.
[http://dx.doi.org/10.1002/jccs.201900234]
[109]
Vaysipour, S.; Nasr Esfahani, M.; Rafiee, Z. Synthesis and characterization of polyvinylpyrrolidone immobilised on magnetic nanoparticles modified by ionic liquid as novel and recyclable catalyst for the three-component synthesis of amidoalkyl-naphthols. App. Org. Chem., 2019, 33(9) e5090
[110]
Soled, S. Silica-supported catalysts get a new breath of life. Science, 2015, 350(6265), 1171-1172.
[http://dx.doi.org/10.1126/science.aad2204] [PMID: 26785461]
[111]
Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-supported organic catalysts. Chem. Rev., 2003, 103(9), 3401-3429.
[http://dx.doi.org/10.1021/cr010440o] [PMID: 12964876]
[112]
Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent developments in the synthesis of supported catalysts. Chem. Rev., 2015, 115(14), 6687-6718.
[http://dx.doi.org/10.1021/cr500486u] [PMID: 26088402]
[113]
Wang, Z.; Chen, G.; Ding, K. Self-supported catalysts. Chem. Rev., 2009, 109(2), 322-359.
[http://dx.doi.org/10.1021/cr800406u] [PMID: 19099451]
[114]
Kotadia, D.A.; Soni, S.S. Silica gel supported-SO3H functionalised benzimidazolium based ionic liquid as a mild and effective catalyst for rapid synthesis of 1-amidoalkyl-2-naphthols. J. Mol. Catal. Chem., 2011, 353-354, 44-49.
[http://dx.doi.org/10.1016/j.molcata.2011.11.003]
[115]
Rezaei, R.; Dehghaniyanfard, M. An efficient solvent-free protocol for the synthesis of 1-amidoalkyl-2-naphthols using melamine-formaldehyde resin supported H+ under solvent-free conditions. Chin. Chem. Lett., 2011, 8(3), 1142-1145.
[116]
Luo, J.; Zhang, Q. A one-pot multicomponent reaction for synthesis of 1-amidoalkyl-2-naphthols catalyzed by PEG-based dicationic acidic ionic liquids under solvent-free conditions. Monatsh. Chem., 2011, 142(9), 923-930.
[http://dx.doi.org/10.1007/s00706-011-0522-6]
[117]
Wang, L.M.; Zhang, Y.; Gao, T.; Jing, J. Silica supported methane sulfonic acid as an efficient and reusable heterogenous catalyst for the synthesis of 1-amidoalkyl-2-naphthols. Chin. J. Chem., 2011, 29(8), 1656-1666.
[http://dx.doi.org/10.1002/cjoc.201180296]
[118]
Moeinpour, F.; Birjandi, A.S.; Ahmadi, N.D.; Khojastehnezhad, A.; Shahri, F.S.M. SbCl3-SiO2 catalyzed simple and efficient one-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Synth. React. Inorg. Met. Org. Nano-Met. Chem., 2012, 42(2), 278-281.
[http://dx.doi.org/10.1080/15533174.2011.609860]
[119]
Zarei, A. Microwave-assisted one-pot synthesis of 1-amidoalkyl-2-naphthols and dibenzo [a, j] xanthenes using phosphorus pentaoxide on solid support. Iran. J. Catal., 2012, 2(1), 7-16.
[120]
Shaterian, H.R.; Rigi, F.; Arman, M. Cellulose sulphuric acid: an efficient and recyclable solid acid catalyst for the protection of hydroxyl groups using HMDS under mild conditions. Chem. Sci. Trans., 2012, 1(1), 155-161.
[http://dx.doi.org/10.7598/cst2012.137]
[121]
Moghanian, H.; Ebrahimi, S. Three component, one-pot synthesis of 1-amidoalkyl-2-naphthols using polyphosphate ester under solvent-free conditions. J. Saudi Chem. Soc., 2014, 18, 165-168.
[http://dx.doi.org/10.1016/j.jscs.2011.06.017]
[122]
Fadavi, A.; Mahdavinia, G.H. NaHSO4 supported on silica: an alternative and efficient catalyst for green synthesis of 1-amidoalkyl-2-naphthols under ultrasound irradiation. Phy. Chem.: An Ind. J., 2014, 9(9), 318-321.
[123]
Abolghasem, D.; Afsaneh, T.N.; Niloofar, T.H. Carbon-based solid acid catalyzed one-pot Mannich reaction: a facile synthesis of β-amino carbonyl compounds. Bull. Korean Chem. Soc., 2011, 32(2), 635-639.
[http://dx.doi.org/10.5012/bkcs.2011.32.2.635]
[124]
Kotra, N.M.; Reguri, B.R.; Khagga, M. Polyaniline sulphate salt catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent free conditions. Pharma Chem., 2014, 6(4), 388-392.
[125]
Hajjami, M.; Choghamarani, G.A.; Gholamian, F. Multicomponent synthesis of bioactive 1-amidoalkyl-2-naphthols under solvent-free conditions. Bulg. Chem. Commun., 2015, 47(1), 119-124.
[126]
Rani, G.S.; Reddy, T.V.K.; Prasad, R.B.N. Devi, B.L.A.P. Green protocol for the multicomponent synthesis of 1-amidoalkyl-2-naphthols employing sustainable and recyclable SO3H-carbon catalyst. Int. J. Adv. Res. Chem. Sci. (IJARCS), 2015, 2(7), 22-30.
[127]
Forouzani, M.; Bosra, G.H. Amberlite IR-120 catalyzed, microwave-assisted rapid synthesis of 1-amidoalkyl-2-naphthols. Arab. J. Chem., 2016, 9(S1), 752-755.
[http://dx.doi.org/10.1016/j.arabjc.2011.08.002]
[128]
Bhat, S.U.; Naikoo, R.A.; Bhat, R.A.; Malla, A.M.; Tomar, R. Zeolite H-ZSM-5: an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. J. Prog. Res.Chem., 2017, 5(1), 2454-3136.
[129]
Pourmousavi, S.A.; Moghimi, P.; Ghorbani, F.; Zamani, M. Sulfonated polynaphthalene as an effectiveand reusable catalyst for the one-pot preparation of 1-amidoalkyl-2-naphthols: DFT and spectroscopic studies. J. Mol. Struct., 2017, 1144, 87-102.
[http://dx.doi.org/10.1016/j.molstruc.2017.05.010]
[130]
Shaterian, H.R.; Mohammadnia, M. Nano-crystalline TiO2-HClO4 catalyzed three-component preparation of derivatives of 1-amidoalkyl-2-naphthols, 1-carbamato-alkyl-2-naphthols, and 1-(α-aminoalkyl)-2-naphthol, and 12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]-xanthen-11-one. Res. Chem. Intermed., 2012, 39(9), 4221-4237.
[http://dx.doi.org/10.1007/s11164-012-0938-6]
[131]
Narayanan, D.P.; Cherikallinmel, S.K.; Sankaran, S.; Narayanan, B.N. Functionalized carbon dot adorned coconut shell char derived green catalysts for the rapid synthesis of amidoalkyl naphthols. J. Colloid Interface Sci., 2018, 520, 70-80.
[http://dx.doi.org/10.1016/j.jcis.2018.02.077] [PMID: 29529463]
[132]
Kumar, R.P.C.; Kumar, K.S.; Mohan, N.K.R. PEG-SO3H as an efficient and reusable biodegradable polymeric catalyst for the synthesis of amidoalkyl-naphthols. Pharma Chem., 2018, 10(7), 81-85.
[133]
Ajayan, P.M.; Schadler, L.S.; Braun, P.V. Nanocomposite Science and Technology; John Wiley & sons, 2003.
[http://dx.doi.org/10.1002/3527602127]
[134]
Zhu, Y. Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem, 2010, 2(4), 365-374.
[http://dx.doi.org/10.1002/cctc.200900314]
[135]
Bodaghifard, M.A.; Hamidinasab, M.; Ahadi, N. Recent advances in the preparation and application of organic-inorganic hybrid magnetic nanocatalysts on multicomponent reactions. Curr. Org. Chem., 2018, 22(3), 234-267.
[http://dx.doi.org/10.2174/1385272821666170705144854]
[136]
Zali, A.; Shokrolahi, A. Nano-sulfated zirconia as an efficient, recyclable and environmentally benign catalyst for one-pot three component synthesis of 1-amidoalkyl-2-naphthols. Chin. Chem. Lett., 2012, 23(3), 269-272.
[http://dx.doi.org/10.1016/j.cclet.2011.12.002]
[137]
Yarahmadi, H.; Shaterian, H.R. Sulfamic acid functionalized magnetic nanoparticles: an efficient solid acid for the multicomponent condensations. J. Chem. Res., 2012, 36(1), 52-55.
[http://dx.doi.org/10.3184/174751912X13264749420957]
[138]
Mirjalili, B.F.; Mirhoseini, M.A.; Bamoniri, A. One-pot synthesis of 1-amidoalkyl-2-naphthols catalyzed by nano-SnCl4.SiO2. J. Nano. Struct., 2012, 2, 241-249.
[139]
Das, V.K.; Borah, M.; Thakur, A.J. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener “nanoparticle-catalyzed organic synthesis enhancement” approach. J. Org. Chem., 2013, 78(7), 3361-3366.
[http://dx.doi.org/10.1021/jo302682k] [PMID: 23472638]
[140]
Ghodrati, K.; Farrokhi, A.; Karami, C.; Hamidi, Z. Nano silica sulfuric acid an efficient and recoverable heterogenous catalyst for the preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2015, 45, 15-20.
[http://dx.doi.org/10.1080/15533174.2013.809746]
[141]
Dehbashi, M.; Aliahmad, M.; Shafiee, M.R.M.; Ghashang, M. Nickel-doped-SnO2 nanopaticle: preparation and evaluation of their catalytic activity in the synthesis of 1-amidoalkyl-2-naphthols. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2013, 43, 1301-1306.
[http://dx.doi.org/10.1080/15533174.2012.757753]
[142]
Shaterian, H.R.; Mohammadnia, M. Nano-crystalline TiO2-HClO4 catalyzed three-component preparation of derivatives of 1-amidoalkyl-2-naphthols, 1-carbamato-alkyl-2-naphthols, and 1-α-aminoalkyl)-2-naphthol, and 12-aryl-8, 9, 10, 12-tetrahydrobenzo[a]-xanthen-11-one. Res. Chem. Intermed., 2012, 39(9), 4221-4237.
[http://dx.doi.org/10.1007/s11164-012-0938-6]
[143]
Safari, J.; Zarnegar, Z. Synthesis of 1-amidoalkyl-2-naphthols by nano-Fe3O4 modified carbon nanotubes via a multicomponent strategy in presence of microwave. J. Ind. Eng. Chem., 2013, 20, 2292-2297.
[http://dx.doi.org/10.1016/j.jiec.2013.10.004]
[144]
Ghomi, J.S.; Zahedi, S.; Ghasemzadeh, M.A. Nano silica: an efficient and recyclable heterogenous catalyst for the one-pot synthesis of 1-amidoalkyl-2-naphthols. Monatsh. Chem., 2014, 145, 1191-1199.
[145]
Mokhtary, M.; Torabi, M. Nano-magnetite (Fe3O4), an efficient and robust catalyst for the one-pot synthesis of 1-(aryl(piperidin-1-yl)methyl)naphtha-alene-2-ol and 1-(á-amidoalkyl)-2-naphthol under ultrasound irradiation. J. Saudi Chem. Soc., 2017, 21(S1), S299-S304.
[http://dx.doi.org/10.1016/j.jscs.2014.03.009]
[146]
Tayebee, R.; Amini, M.M.; Rostamian, H.; Aliakbari, A. Preparation and characterization of a novel Wells-Dawson heteropolyacid-based magnetic inorganic-organic nanohybrid catalyst H6P2W18O62/pyridine-Fe3O4 for the efficient synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. nt. J. Inorg. Organomet. Bioinorg. Chem. Dalton Trans., 2014, 43, 1550-1563.
[http://dx.doi.org/10.1039/C3DT51594J] [PMID: 24213526]
[147]
Zamani, L.; Zomorodian, K.; Mirjalili, B.B.F.; Khabnadideh, S. One-pot preparations of 1-amidoalkyl-2-naphthols derivatives catalyzed by Nano-TiCl4.SiO2 with antimicrobial studies of some products. J. Pharma. Sci. Innov., 2014, 3(3), 208-216.
[http://dx.doi.org/10.7897/2277-4572.033141]
[148]
Ghomi, J.S.; Zahedi, S.; Ghasemzadeh, M.A. AgI nanoparticles as a remarkable catalyst in the synthesis of (amidoalkyl) naphthol and oxazine derivatives: an eco-friendly approach. Monatsh. Chem., 2014, 145, 1191-1199.
[http://dx.doi.org/10.1007/s00706-014-1184-y]
[149]
Safari, J.; Zarnegar, Z. Synthesis of 1-amidoalkyl-2-naphthols by nano-Fe3O4 modified carbon nanotubes via a multicomponent strategy in the presence of microwaves. J. Ind. Eng. Chem., 2013, 20(4), 2292-2297.
[http://dx.doi.org/10.1016/j.jiec.2013.10.004]
[150]
Mirjalili, F.; Bamoniri, A.; Rahmati, L. One-pot synthesis of 1-amidoalkyl-2-naphthols catalyzed by nano-BF3-SiO2. Arab. J. Chem., 2015, 12(8), 2216-2223.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.026]
[151]
Singh, R.K.; Bala, R.; Kumar, S. An efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by zinc oxide nanoparticles under solvent-free conditions. Indian J. Chem., 2016, 55, 381-386.
[http://dx.doi.org/10.1002/chin.201632102]
[152]
Taghrir, H.; Ghashang, M.; Biregan, M.N. Preparation of 1-amidoalkyl-2-naphthol derivatives using barium phosphate nano-powders. Chin. Chem. Lett., 2016, 27, 119-126.
[http://dx.doi.org/10.1016/j.cclet.2015.08.011]
[153]
Esfahani, M.N.; Montazerozohori, M.; Taei, M. Aluminate sulfonic acid: novel and recyclable nanocatalyst for efficient synthesis of aminoalkylnaphthols and 1-amidoalkyl-2-naphthols. C. R. Chim., 2016, 19, 986-994.
[http://dx.doi.org/10.1016/j.crci.2016.02.003]
[154]
Mokhtary, M.; Torabi, M. Nano magnetite (Fe3O4), an efficient and robus tcatalyst for the one-pot synthesis of 1-(aryl(piperidin-1-yl)methyl)naphtha-lene-2-ol and1-(α-amido alkyl)-2-naphthol under ultrasound irradiation. J. Saudi Chem. Soc., 2017, 21, 299-304.
[http://dx.doi.org/10.1016/j.jscs.2014.03.009]
[155]
Zhang, Q.; Gao, Y.H.; Qin, S.L.; Wei, H.X. Facile one-pot synthesis of 1-amidoalkyl-2-naphthols and benzopyrans using magnetic nanoparticle-supported acidic ionic liquid as a highly efficient and reusable catalyst. Catalysts, 2017, 7(11), 351.
[http://dx.doi.org/10.3390/catal7110351]
[156]
Kooti, M.; Karimi, M.; Nasiri, E. A novel copper complex supported on magnetic reduced graphene oxide: an efficient and green nanocatalyst for the synthesis of 1-amidoalkyl-2-naphthol derivatives. J. Nanopart. Res., 2018, 20, 16.
[http://dx.doi.org/10.1007/s11051-017-4107-0]
[157]
Bankar, S.R.; Shelke, N. Nanomagnetite-supported molybdenum oxide (nanocat-Fe-Mo): an efficient green catalyst for multicomponent synthesis of 1-amidoalkyl-2-naphthols. Res. Chem. Intermed., 2018, 44(5), 3321-3324.
[http://dx.doi.org/10.1007/s11164-018-3321-4]
[158]
Dadhania, H.N.; Raval, D.K.; Dadhania, A.N. Sonochemical synthesis of 2,3-dihydro-4(1H)-quinazolinones and 1-amidoalkyl-naphthols using magnetic nanoparticle-supported ionic liquid as a heterogenous catalyst. Res. Chem. Intermed., 2018, 44(1), 117-134.
[http://dx.doi.org/10.1007/s11164-017-3093-2]
[159]
Mistry, S.R.; Joshi, R.S.; Maheria, K.S. Zeolite H-BEA catalysed multicomponent reaction: one-pot synthesis of 1-amidoalkyl-2-naphthols-biologically active drug-like molecules. J. Chem. Sci., 2011, 123(4), 427-432.
[http://dx.doi.org/10.1007/s12039-011-0095-2]
[160]
Samantaray, S.; Hota, G.; Mishra, B.G. Physicochemical characterization and catalytic applications of MoO3-ZrO2 composite oxides towards one-pot synthesis of 1-amidoalkyl-2-naphthols. Catal. Commun., 2011, 12, 1255-1259.
[http://dx.doi.org/10.1016/j.catcom.2011.04.014]
[161]
Ahad, A.; Farooqui, M.; Khan, A.M.P.; Mohsin, M.; Farooqui, M. An environmentally benign multicomponent synthesis of 1-amidoalkyl-2-naphthols using I2-Al2O3 as heterogenous catalyst under solvent-free condition. Asian J. Biochem. Pharma. Res., 2012, 3(2), 2231-2560.
[162]
Choghamarani, A.G.; Rashidimoghadam, S. One-pot synthesis of 1-amidoalkyl-2-naphthols catalyzed by melamine-Br3 under solvent-free conditions. Chin. J. Catal., 2014, 35, 1024-1029.
[http://dx.doi.org/10.1016/S1872-2067(14)60029-2]
[163]
Tigote, R.M.; Haval, K.P.; Kazi, S.K.; Sarnikar, Y.P.; Sagar, A.D. Phosphonitrilic chloride acid: an efficient catalyst for synthesis of amidoalkyl-naphthol under solvent free condition. Int. J. Chem. Phy. Sci., 2015, 4(1), 39-44.
[164]
Gong, K.; Wang, H.; Ren, X.; Wang, Y.; Chen, J. β-Cyclodextrin-butane sulfonic acid: an efficient and reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Green Chem., 2015, 17(5), 3141-3147.
[http://dx.doi.org/10.1039/C5GC00384A]
[165]
Patil, M.; Shrikrishna, K.; Panchsheela, U.; Vasant, H. Environmentally benign synthesis of 1-amidoalkyl-2-naphthols by using citrus lemon juice. Pharma Chem., 2017, 9(5), 28-32.
[166]
Rekunge, D.S.; Bendale, S.H.; Chaturbhuj, G.U. Activated Fuller’s earth: an efficient, inexpensive, environmentally benign, and reusable catalyst for rapid solvent-free synthesis of 1-(amido/amino)alkyl-2-naphthols. Monatsh. Chem., 2018, 149, 1991-1997.
[http://dx.doi.org/10.1007/s00706-018-2247-2]
[167]
Singh, R.K.; Chaudhary, S.; Prasad, D.N.; Kumar, S. An atom-economic efficient synthesis of 1-amidoalkyl-2-naphthols mediated by hexachlorocyclotriphosphazene (HCCP) as a novel catalyst. Lett. Org. Chem., 2018, 16(10), 846-850.
[http://dx.doi.org/10.2174/1570178616666181210103350]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy