Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Study of Several Synthesis Methods of Indolizidine (±)-209I and (±)-209B as Natural Alkaloids

Author(s): Fatemeh Mohajer, Ghodsi Mohammadi Ziarani* and Razieh Moradi

Volume 24, Issue 5, 2020

Page: [516 - 535] Pages: 20

DOI: 10.2174/1385272824666200226113022

Price: $65

Abstract

Natural products have received much attention due to their importance and application. Indolizidine, categorized as an alkaloid, has several biological activities. The synthesis of natural compounds such as indolizidines has attracted much attention from many chemists’ and researchers’ perspectives. There are many areas to be explored in this subject; that is why synthesizing indolizidine 209I and (±)-indolizidine 209B as natural compounds have received much consideration. This review discloses the procedures and methodology to provide (±)-indolizidine 209I and 209B due to the importance of indolizidines.

Keywords: Natural products, alkaloids, biologically active compound, indolizidine 209I, (±)-indolizidine 209B, poisonous frogs.

Graphical Abstract

[1]
Shao, J.; Yang, J.S. A diastereoselective cyclic imine cycloaddition strategy to access polyhydroxylated indolizidine skeleton: concise syntheses of (+)-/(-)-lentiginosines and (-)-2-epi-steviamine. J. Org. Chem., 2012, 77(18), 7891-7900.
[http://dx.doi.org/10.1021/jo3010777] [PMID: 22946565]
[2]
He, Z-Q.; Han, B.; Li, R.; Wu, L.; Chen, Y-C. Enantioselective construction of lactone[2,3-b]piperidine skeletons via organocatalytic tandem reactions. Org. Biomol. Chem., 2010, 8(4), 755-757.
[http://dx.doi.org/10.1039/B922053D] [PMID: 20135029]
[3]
Watson, P.S.; Jiang, B.; Scott, B. A diastereoselective synthesis of 2,4-disubstituted piperidines: scaffolds for drug discovery. Org. Lett., 2000, 2(23), 3679-3681.
[http://dx.doi.org/10.1021/ol006589o] [PMID: 11073674]
[4]
Cossy, J. Selective methodologies for the synthesis of biologically active piperidinic compounds. Chem. Rec., 2005, 5(2), 70-80.
[http://dx.doi.org/10.1002/tcr.20035] [PMID: 15825169]
[5]
Dewick, P.M. Medicinal natural products: a biosynthetic approach; John Wiley & Sons, 2002.
[6]
Crabb, T.A.; Newton, R.F.; Jackson, D. Stereochemical studies of nitrogen bridgehead compounds by spectral means. Chem. Rev., 1971, 71(1), 109-126.
[http://dx.doi.org/10.1021/cr60269a005]
[7]
Michael, J.P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep., 2005, 22(5), 603-626.
[http://dx.doi.org/10.1039/b413748p] [PMID: 16193159]
[8]
Cassal, J.M.; Fürst, A.; Meier, W. Synthese der enantiomeren 2‐Pyrrolidinessigsäuren. Helv. Chim. Acta, 1976, 59(6), 1917-1924.
[http://dx.doi.org/10.1002/hlca.19760590602]
[9]
Ojima, I.; Iula, D.M. New Approaches to the Syntheses of Piperidine; Izidine, and Quinazoline Alkaloids by Means of Transition Metal Catalyzed Carbonylations: Elsevier Oxford, UK, 1999.
[10]
Weinreb, S.M. Studies on total synthesis of the cylindricine/fasicularin/lepadiformine family of tricyclic marine alkaloids. Chem. Rev., 2006, 106(6), 2531-2549.
[http://dx.doi.org/10.1021/cr050069v] [PMID: 16771458]
[11]
Takahata, H.; Momose, T. Simple Indolizidine Alkaloids. In: The Alkaloids: Chemistry and Pharmacology; Geoffrey, A.C., Ed.; ScienceDirect, 1993; 44, pp. 189-256.
[12]
Jones, T.H.; Blum, M.S.; Fales, H.M. Ant venom alkaloids from Solenopsis and Monorium species: recent developments. Tetrahedron, 1982, 38(13), 1949-1958.
[http://dx.doi.org/10.1016/0040-4020(82)80044-6]
[13]
Hartmann, T.; Witte, L.; Ehmke, A.; Theuring, C.; Rowell-Rahier, M.; Pasteels, J.M. Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry, 1997, 45(3), 489-497.
[http://dx.doi.org/10.1016/S0031-9422(97)00009-5]
[14]
Saporito, R.A.; Norton, R.A.; Andriamaharavo, N.R.; Garraffo, H.M.; Spande, T.F. Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs. J. Chem. Ecol., 2011, 37(2), 213-218.
[http://dx.doi.org/10.1007/s10886-011-9914-7] [PMID: 21318398]
[15]
Lloyd, G.K.; Williams, M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J. Pharmacol. Exp. Ther., 2000, 292(2), 461-467.
[PMID: 10640281]
[16]
Myers, C.W.; Daly, J.W. Dart-poison frogs. Sci. Am., 1983, 248(2), 120-133.
[http://dx.doi.org/10.1038/scientificamerican0283-120] [PMID: 6836257]
[17]
Zhou, D.J.; Toyooka, N. Synthesis of 5, 8-disubstituted indolizidine poison-frog alkaloids. Chem. J. Chin. Univ., 2012, 33(511), 185.
[18]
Mohammadi Ziarani, G.; Chenevert, R.; Badiei, A.R. Chemoenzymatic enantioselective formal synthesis of (-)-gephyrotoxin-223. Iranian J. Chem. Chem. Eng, 2006, 25, 31-38.
[19]
Chênevert, R.; Mohammadi Ziarani, G.; Morin, M.P.; Dasser, M. Enzymatic desymmetrization of meso cis-2, 6-and cis, cis-2, 4, 6-substituted piperidines. Chemoenzymatic synthesis of (5S, 9S)-(+)-indolizidine 209D. Tetrahedron Asymmetry, 1999, 10(16), 3117-3122.
[http://dx.doi.org/10.1016/S0957-4166(99)00315-8]
[20]
Chênevert, R.; Mohammadi Ziarani, G.; Dasser, M. Chemoenzymatic enan-toselective synthesis of (-)-indolizidine 167 B. Heterocycles, 1999, 51, 593.
[http://dx.doi.org/10.3987/COM-98-8421]
[21]
Enders, D.; Thiebes, C. First enantioselective synthesis of dendrobatid alka-loids indolizidine (-)-209I and (-)-223J. Synlett, 2000, 2000(12), 1745-1748.
[http://dx.doi.org/10.1055/s-2000-8675]
[22]
Aronstam, R.S.; Daly, J.W.; Spande, T.F.; Narayanan, T.K.; Albuquerque, E.X. Interaction of gephyrotoxin and indolizidine alkaloids with the nicotinic acetylcholine receptor-ion channel complex of Torpedo electroplax. Neurochem. Res., 1986, 11(8), 1227-1240.
[http://dx.doi.org/10.1007/BF00965950] [PMID: 2431336]
[23]
Daly, J.W.; Nishizawa, Y.; Padgett, W.L.; Tokuyama, T.; Smith, A.L.; Holmes, A.B.; Kibayashi, C.; Aronstam, R.S. 5,8-disubstituted indolizidines: a new class of noncompetitive blockers for nicotinic receptor-channels. Neurochem. Res., 1991, 16(11), 1213-1218.
[http://dx.doi.org/10.1007/BF00966698] [PMID: 1815137]
[24]
Fréville, S.; Delbecq, P.; Thuy, V.M.; Petit, H.; Célérier, J.P.; Lhommet, G. Diastereocontrolled reduction of cyclic β-enaminones. A new diastereoselective route to 2,6-disubstituted piperidines. Tetrahedron Lett., 2001, 42(28), 4609-4611.
[http://dx.doi.org/10.1016/S0040-4039(01)00770-5]
[25]
Taly, A.; Corringer, P-J.; Guedin, D.; Lestage, P.; Changeux, J-P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov., 2009, 8(9), 733-750.
[http://dx.doi.org/10.1038/nrd2927] [PMID: 19721446]
[26]
Gnecco, D.; Marazano, C.; Das, B.C. Asymmetric synthesis from pyridines: use of new chiral 1, 4-dihydropyridines in a short synthesis of 5, 8-disubstituted indolizidine (+)-209B. J. Chem. Soc., 1991, (9), 625-626.
[27]
Weintraub, P.M.; Sabol, J.S.; Kane, J.M.; Borcherding, D.R. Recent advances in the synthesis of piperidones and piperidines. Tetrahedron, 2003, 59(17), 2953-2989.
[http://dx.doi.org/10.1016/S0040-4020(03)00295-3]
[28]
Yu, S.; Zhu, W.; Ma, D. A one-pot formal [4 + 2] cycloaddition approach to substituted piperidines, indolizidines, and quinolizidines. total synthesis of indolizidine (-)-209I. J. Org. Chem., 2005, 70(18), 7364-7370.
[http://dx.doi.org/10.1021/jo051080y] [PMID: 16122260]
[29]
Liu, P.; Hong, S.; Weinreb, S.M. Total synthesis of the Securinega alkaloid (-)-secu’amamine A. J. Am. Chem. Soc., 2008, 130(24), 7562-7563.
[http://dx.doi.org/10.1021/ja802700z] [PMID: 18491903]
[30]
Snider, B.B.; Lin, H. Total synthesis of (−)-FR901483. J. Am. Chem. Soc., 1999, 121(34), 7778-7786.
[http://dx.doi.org/10.1021/ja991160h]
[31]
Mohammadi Ziarani, G.; Mohajer, F. kheilkordi, Z., Recent progress towards synthesis of the indolizidine alkaloid 195B. Curr. Org. Synth., 2020, 17, 1-1.
[32]
Spande, T.F.; Garraffo, H.M.; Edwards, M.W.; Yeh, H.J.C.; Pannell, L.; Daly, J.W. Epibatidine: a novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc., 1992, 114(9), 3475-3478.
[http://dx.doi.org/10.1021/ja00035a048]
[33]
Spande, T.F.; Garraffo, H.M.; Yeh, H.J.C.; Pu, Q.L.; Pannell, L.K.; Daly, J.W. A new class of alkaloids from a dendrobatid poison frog: a structure for alkaloid 251F. J. Nat. Prod., 1992, 55(6), 707-722.
[http://dx.doi.org/10.1021/np50084a002] [PMID: 1522417]
[34]
Chiou, W-H.; Chen, H-Y. Synthesis of dendrobatid alkaloid (+)-167B and (+)-209D and the investigation of diastereoselectivity using DFT calculations. RSC Advances, 2017, 7(2), 684-687.
[http://dx.doi.org/10.1039/C6RA24960D]
[35]
Reddy, P.G.; Baskaran, S. Epoxide-initiated cationic cyclization of azides: a novel method for the stereoselective construction of 5-hydroxymethyl azabicyclic compounds and application in the stereo- and enantioselective total synthesis of (+)- and (-)-indolizidine 167B and 209D. J. Org. Chem., 2004, 69(9), 3093-3101.
[http://dx.doi.org/10.1021/jo035258x] [PMID: 15104448]
[36]
Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in natural product synthesis; Wiley-VCH: Weinheim, 2011.
[http://dx.doi.org/10.1002/9783527634880]
[37]
Davis, F.A.; Prasad, K.R.; Nolt, M.B.; Wu, Y. N-sulfinyl β-amino Weinreb amides: synthesis of enantiopure β-amino carbonyl compounds. Asymmetric synthesis of (+)-sedridine and (-)-allosedridine. Org. Lett., 2003, 5(6), 925-927.
[http://dx.doi.org/10.1021/ol034119z] [PMID: 12633107]
[38]
Michael, J.P.; Gravestock, D. An enantioselective synthesis of (-)-indolizidine 167B, a skin alkaloid from a neotropical dendrobatid frog. S. Afr. J. Chem., 1998, 51(3), 146-157.
[39]
de Koning, C.B.; Michael, J.P.; Riley, D.L. Formal synthesis of (5R, 8R, 8aS)-indolizidine 209I via enaminones incorporating weinreb amides. Heterocycles, 2009, 79(1), 935-953.
[http://dx.doi.org/10.3987/COM-08-S(D)68]
[40]
Olivier, W.J.; Gardiner, M.G.; Bissember, A.C.; Smith, J.A. Brønsted acid-mediated annulations of pyrroles featuring N-tethered α, β-unsaturated ketones and esters: total syntheses of (±)-tashiromine and (±)-indolizidine 209I. Tetrahedron, 2018, 74(38), 5436-5441.
[http://dx.doi.org/10.1016/j.tet.2018.04.067]
[41]
Gourlay, B.S.; Little, I.; Ryan, J.H.; Smith, J.A. A general and efficient approach to the proposed structures of frog toxins: the 5-alkylindolizidines. Nat. Prod. Commun., 2006, 1(10), 831-837.
[http://dx.doi.org/10.1177/1934578X0600101004]
[42]
Westhus, M.; Gonthier, E.; Brohm, D.; Breinbauer, R. An efficient and inexpensive scavenger resin for Grubbs’ catalyst. Tetrahedron Lett., 2004, 45(15), 3141-3142.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.083]
[43]
Li, Y.J.; Chang, Y.K.; Ho, G.M.; Huang, H.M. Asymmetric [3,3]- and [1,3]-sigmatropic rearrangements of γ-allyloxy vinylogous urethanes. Org. Lett., 2009, 11(18), 4224-4227.
[http://dx.doi.org/10.1021/ol901679h] [PMID: 19705867]
[44]
De Luca, L.; Giacomelli, G.; Porcheddu, A. A mild and efficient alternative to the classical Swern oxidation. J. Org. Chem., 2001, 66(23), 7907-7909.
[http://dx.doi.org/10.1021/jo015935s] [PMID: 11701058]
[45]
RajanBabu T.V. Stereochemistry of intramolecular free-radical cyclization reactions. Acc. Chem. Res., 1991, 24(5), 139-145.
[http://dx.doi.org/10.1021/ar00005a003]
[46]
Edwards, M.W.; Daly, J.W.; Myers, C.W. Alkaloids from a panamanian poison frog, Dendrobates speciosus: identification of pumiliotoxin-A and allopumiliotoxin class alkaloids, 3,5-disubstituted indolizidines, 5-substituted 8-methylindolizidines, and a 2-methyl-6-nonyl-4-hydroxypiperidine. J. Nat. Prod., 1988, 51(6), 1188-1197.
[http://dx.doi.org/10.1021/np50060a023] [PMID: 3236011]
[47]
Li, Y.J.; Hou, C.C.; Chang, K.C. Total synthesis of indolizidine alkaloids (–)‐167B,(–)‐209I, and (–)‐223A by using a common tricyclic lactone. Eur. J. Org. Chem., 2015, 2015(8), 1659-1663.
[http://dx.doi.org/10.1002/ejoc.201500028]
[48]
Lei, B.L.; Zhang, Q.S.; Yu, W.H.; Ding, Q.P.; Ding, C.H.; Hou, X.L. Kinetic resolution of 2-substituted 2,3-dihydro-4-pyridones by palladium-catalyzed asymmetric allylic alkylation: catalytic asymmetric total synthesis of indolizidine (-)-209I. Org. Lett., 2014, 16(7), 1944-1947.
[http://dx.doi.org/10.1021/ol500498m] [PMID: 24661080]
[49]
Acharya, H.P.; Clive, D.L. 2,6-Disubstituted and 2,2,6-trisubstituted piperidines from serine: asymmetric synthesis and further elaboration. J. Org. Chem., 2010, 75(15), 5223-5233.
[http://dx.doi.org/10.1021/jo101010c] [PMID: 20590138]
[50]
Michel, P.; Rassat, A. An easy access to 2, 6-dihydroxy-9-azabicyclo [3.3. 1] nonane, a versatile synthon. J. Org. Chem., 2000, 65(8), 2572-2573.
[http://dx.doi.org/10.1021/jo991333l] [PMID: 10789474]
[51]
Michel, P.; Rassat, A.; Daly, J.W.; Spande, T.F. A stereospecific synthesis of (+/-)-5,8-disubstituted indolizidines and (+/-)-1,4-disubstituted quinolizidines found in poison frog skins. J. Org. Chem., 2000, 65(26), 8908-8918.
[http://dx.doi.org/10.1021/jo000666b] [PMID: 11149832]
[52]
Lemonnier, G.; Charette, A.B. Stereoselective synthesis of 2,3,6-trisubstituted tetrahydropyridines via Tf2O-mediated Grob fragmentation: access to indolizidines (-)-209I and (-)-223J. J. Org. Chem., 2010, 75(21), 7465-7467.
[http://dx.doi.org/10.1021/jo1015344] [PMID: 20945853]
[53]
Frankowski, K.J.; Golden, J.E.; Zeng, Y.; Lei, Y.; Aubé, J. Syntheses of the Stemona alkaloids (+/-)-stenine, (+/-)-neostenine, and (+/-)-13-epineostenine using a stereodivergent Diels-Alder/azido-Schmidt reaction. J. Am. Chem. Soc., 2008, 130(18), 6018-6024.
[http://dx.doi.org/10.1021/ja800574m] [PMID: 18396881]
[54]
Barbe, G.; Charette, A.B. Total synthesis of (+)-lepadin B: stereoselective synthesis of nonracemic polysubstituted hydroquinolines using an RC-ROM process. J. Am. Chem. Soc., 2008, 130(42), 13873-13875.
[http://dx.doi.org/10.1021/ja8068215] [PMID: 18821760]
[55]
Sales, M.; Charette, A.B. A Diels-Alder approach to the stereoselective synthesis of 2,3,5,6-tetra- and 2,3,4,5,6-pentasubstituted piperidines. Org. Lett., 2005, 7(26), 5773-5776.
[http://dx.doi.org/10.1021/ol052436v] [PMID: 16354063]
[56]
Lemire, A.; Beaudoin, D.; Grenon, M.; Charette, A.B. [4+2] Cycloaddition of 2-substituted 1,2-dihydropyridines with nitrosobenzene: asymmetric synthesis of trans-2-substituted 3-amino-1,2,3,6-tetrahydropyridines. J. Org. Chem., 2005, 70(6), 2368-2371.
[http://dx.doi.org/10.1021/jo048216x] [PMID: 15760234]
[57]
Enders, D.; Thiebes, C. Efficient stereoselective syntheses of piperidine, pyrrolidine, and indolizidine alkaloids. Pure Appl. Chem., 2001, 73(3), 573-578.
[http://dx.doi.org/10.1351/pac200173030573]
[58]
Wong, H.; Garnier-Amblard, E.C.; Liebeskind, L.S. Organometallic enantiomeric scaffolding: a strategy for the enantiocontrolled construction of regio- and stereodivergent trisubstituted piperidines from a common precursor. J. Am. Chem. Soc., 2011, 133(19), 7517-7527.
[http://dx.doi.org/10.1021/ja201012p] [PMID: 21513336]
[59]
Arrayás, R.G.; Liebeskind, L.S. Chiral scaffolds for enantiocontrolled synthesis: enantio- and regiocontrolled [4+2] cycloaddition to 3-alkenyl-n(3)-pyranylmolybdenum complexes. J. Am. Chem. Soc., 2001, 123(25), 6185-6186.
[http://dx.doi.org/10.1021/ja010612z] [PMID: 11414856]
[60]
Rubio, A.; Liebeskind, L.S. Enantiospecific synthesis by transformations of chiral pool-derived metal. pi.-complexes. A strategy for the introduction of substituents on a pyranose-derived lateral. pi.-ligand either syn or anti to the coordinating metal. J. Am. Chem. Soc., 1993, 115(3), 891-901.
[http://dx.doi.org/10.1021/ja00056a012]
[61]
Michael, J.P.; Gravestock, D. Synthesis of (±)-indolizidine 209B and a new 209B diastereoisomer. Synlett, 1996, 1996(10), 981-982.
[http://dx.doi.org/10.1055/s-1996-5646]
[62]
Holmes, A.B.; Smith, A.L.; Williams, S.F.; Hughes, L.R.; Lidert, Z.; Swithenbank, C. Stereoselective synthesis of (.+-.)-indolizidines 167B, 205A, and 207A. Enantioselective synthesis of (-)-indolizidine 209B. J. Org. Chem., 1991, 56(4), 1393-1405.
[http://dx.doi.org/10.1021/jo00004a012]
[63]
Liou, B.S.; Jhang, R.F.; Chou, S.S.P. Formal synthesis of (±)-indolizidine 209B. Tetrahedron, 2014, 70(41), 7458-7463.
[http://dx.doi.org/10.1016/j.tet.2014.08.015]
[64]
Chou, S.S.P.; Hung, C.C. Aza-Diels-Alder reactions and synthetic applications of thio-substituted 1, 3-dienes with arylsulfonyl isocyanates. Tetrahedron Lett., 2000, 41(43), 8323-8326.
[http://dx.doi.org/10.1016/S0040-4039(00)01447-7]
[65]
Comins, D.L.; Zeller, E. N-acyldihydropyridones as synthetic intermediates. A short synthesis of (±)-indolizidine 209B. Tetrahedron Lett., 1991, 32(42), 5889-5892.
[http://dx.doi.org/10.1016/S0040-4039(00)79418-4]
[66]
Angle, S.R.; Breitenbucher, J.G. Recent progress in the synthesis of piperidine and indolizidine alkaloids. In: Studies in Natural Products Chemistry; Elsevier: Netherlands, 1995; Vol. 16, pp. 453-502.
[67]
Michael, J.P.; Gravestock, D. Vinylogous urethanes in alkaloid synthesis. Applications to the synthesis of racemic indolizidine 209B and its (5R*,8S *,8aS *)-(±) diastereomer, and to (−)-indolizidine 209B. J. Chem. Soc., Perkin Trans. 1, 2000, (12), 1919-1928.
[http://dx.doi.org/10.1039/b001853h]
[68]
Davis, F.A.; Weismiller, M.C. Enantioselective synthesis of tertiary. alpha.-hydroxy carbonyl compounds using [(8,8-dichlorocamphoryl)sulfonyl] oxaziridine. J. Org. Chem., 1990, 55(12), 3715-3717.
[http://dx.doi.org/10.1021/jo00299a007]
[69]
Kaleta, Z.; Makowski, B.T.; Soós, T.; Dembinski, R. Thionation using fluorous Lawesson’s reagent. Org. Lett., 2006, 8(8), 1625-1628.
[http://dx.doi.org/10.1021/ol060208a] [PMID: 16597126]
[70]
Sakurai, O.; Ogiku, T.; Takahashi, M.; Horikawa, H.; Iwasaki, T. A new synthetic method of 1β-methylcarbapenems utilizing the eschenmoser sulfide contraction. Tetrahedron Lett., 1994, 35(14), 2187-2190.
[http://dx.doi.org/10.1016/S0040-4039(00)76792-X]
[71]
H.; YU, M.; Zhang, Y.; Zhao, G., A concise synthesis of (−)-indolizidines 209D and 209B. Chin. J. Chem., 2009, 27(1), 183-188.
[http://dx.doi.org/10.1002/cjoc.200990015]
[72]
Ozawa, T.; Aoyagi, S.; Kibayashi, C. Total synthesis of the marine alkaloid (-)-lepadin B. Org. Lett., 2000, 2(19), 2955-2958.
[http://dx.doi.org/10.1021/ol000153r] [PMID: 10986081]
[73]
Toyooka, N. Synthetic studies on dart-poison frog alkaloids. Recent. Res. Devel. Org. Chem., 2002, 6, 611-624.
[74]
Toyooka, N.; Zhou, D.; Nemoto, H.; Garraffo, H.M.; Spande, T.F.; Daly, J.W. Flexible synthetic routes to poison-frog alkaloids of the 5,8-disubstituted indolizidine-class I: synthesis of common lactam chiral building blocks and application to the synthesis of (-)-203A, (-)-205A, and (-)-219F. Beilstein J. Org. Chem., 2007, 3, 29.
[http://dx.doi.org/10.1186/1860-5397-3-29] [PMID: 17903239]
[75]
Kobayashi, S.; Toyooka, N.; Zhou, D.; Tsuneki, H.; Wada, T.; Sasaoka, T.; Sakai, H.; Nemoto, H.; Garraffo, H.M.; Spande, T.F.; Daly, J.W. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors. Beilstein J. Org. Chem., 2007, 3, 30.
[http://dx.doi.org/10.1186/1860-5397-3-30] [PMID: 21931443]
[76]
Hodgkinson, T.J.; Shipman, M. Practical asymmetric synthesis of both enantiomers of 6-(hydroxymethyl) piperidin-2-one. Synthesis, 1998, 1998(8), 1141-1144.
[http://dx.doi.org/10.1055/s-1998-2123]
[77]
Comins, D.L.; Dehghani, A. Pyridine-derived triflating reagents: an improved preparation of vinyl triflates from metallo enolates. Tetrahedron Lett., 1992, 33(42), 6299-6302.
[http://dx.doi.org/10.1016/S0040-4039(00)60957-7]
[78]
Davis, F.A.; Yang, B. Direct asymmetric synthesis of beta-amino ketones from sulfinimines (N-sulfinylimines). Synthesis of (-)-indolizidine 209B. Org. Lett., 2003, 5(26), 5011-5014.
[http://dx.doi.org/10.1021/ol035981+] [PMID: 14682752]
[79]
Ciblat, S.; Besse, P.; Canet, J-L.; Troin, Y.; Veschambre, H.; Gelas, J. A practical asymmetric synthesis of 2, 6-cis-disubstituted piperidines. Tetrahedron Asymmetry, 1999, 10(11), 2225-2235.
[http://dx.doi.org/10.1016/S0957-4166(99)00226-8]
[80]
Ma, D.W.; Pu, X.T.; Wang, J.Y. Efficient formal synthesis of the dendrobatid alkaloid, indolizidine (-)-209B. Tetrahedron Asymmetry, 2002, 13(20), 2257-2260.
[http://dx.doi.org/10.1016/S0957-4166(02)00577-3]
[81]
Paulvannan, K.; Stille, J.R. Heterocycle formation through aza-annulation: stereochemically controlled syntheses of (.+-.)-5-epitashiromine and (.+-.)-tashiromine. J. Org. Chem., 1994, 59(7), 1613-1620.
[http://dx.doi.org/10.1021/jo00086a009]
[82]
Song, Y.; Okamoto, S.; Sato, F. A concise asymmetric synthesis of 5, 8-disubstituted indolizidine alkaloids. Total synthesis of (−)-indolizidine 209B. Tetrahedron Lett., 2002, 43(48), 8635-8637.
[http://dx.doi.org/10.1016/S0040-4039(02)02149-4]
[83]
Cosford, N.D.; Liebeskind, L.S. An improved method for the synthesis of cationic (. eta. 5-Cyclopentadienyl)(. eta. 3-allyl) Mo (CO)(NO) complexes: the benefit of 1, 2-dimethoxyethane as a solvent. Organometallics, 1994, 13(4), 1498-1503.
[http://dx.doi.org/10.1021/om00016a059]
[84]
Michael, J.P.; Accone, C.; de Koning, C.B.; van der Westhuyzen, C.W. Analogues of amphibian alkaloids: total synthesis of (5R,8S,8aS)-(-)-8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B) and [(1S,4R,9aS)-(-)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol. Beilstein J. Org. Chem., 2008, 4(1), 5.
[http://dx.doi.org/10.1186/1860-5397-4-5] [PMID: 18205934]
[85]
Back, T.G.; Nakajima, K. A convenient new route to piperidines, pyrrolizidines, indolizidines, and quinolizidines by cyclization of acetylenic sulfones with β and γ-chloroamines. Enantioselective total synthesis of indolizidines (-)-167B, (-)-209D, (-)-209B, and (-)-207A. J. Org. Chem., 2000, 65(15), 4543-4552.
[http://dx.doi.org/10.1021/jo000080p] [PMID: 10959857]
[86]
Chen, Z.; Trudell, M.L. A simplified method for the preparation of ethynyl P-tolyl sulfone and ethynyl phenyl sulfone. Synth. Commun., 1994, 24(21), 3149-3155.
[http://dx.doi.org/10.1080/00397919408011330]
[87]
Back, T.; Collins, S.; Kerr, R. Selenosulfonation of acetylenes: preparation of novel. beta.-(phenylseleno) vinyl sulfones and their conversion to acetylenic and. beta.-functionalized sulfones. J. Org. Chem., 1983, 48(18), 3077-3084.
[http://dx.doi.org/10.1021/jo00166a030]
[88]
Marshall, J.A.; Cleary, D.G. Synthesis of 7 (8)-desoxyasperdiol. A precursor of the cembranoid asperdiol. J. Org. Chem., 1986, 51(6), 858-863.
[http://dx.doi.org/10.1021/jo00356a021]
[89]
Nukui, S.; Sodeoka, M.; Sasai, H.; Shibasaki, M. Regio-and stereoselective functionalization of an optically active tetrahydroindolizine derivative. Catalytic asymmetric syntheses of lentiginosine, 1, 2-diepilentiginosine, and gephyrotoxin 209D. J. Org. Chem., 1995, 60(2), 398-404.
[http://dx.doi.org/10.1021/jo00107a019]
[90]
Back, T.G.; Nakajima, K. Enantioselective synthesis of (−)-Pumiliotoxin C from a chiral amino ester and an acetylenic sulfone that acts as an alkene dipole equivalent. J. Org. Chem., 1998, 63(19), 6566-6571.
[http://dx.doi.org/10.1021/jo980647q]
[91]
Bardou, A.; Célérier, J-P.; Lhommet, G. A new diastereoselective route to 5-substituted-8-methylindolizidines. Synthesis of indolizidine (−) 209B. Tetrahedron Lett., 1998, 39(29), 5189-5192.
[http://dx.doi.org/10.1016/S0040-4039(98)01040-5]
[92]
Jefford, C.W.; Sienkiewicz, K.; Thornton, S.R. Short, Enantiospecific syntheses of indolizidines 209B and 209D, and Piclavine A from diethyl-l-glutamate. Helv. Chim. Acta, 1995, 78(6), 1511-1524.
[http://dx.doi.org/10.1002/hlca.19950780610]
[93]
Behrens, C.H.; Sharpless, K.B. Selective transformations of 2, 3-epoxy alcohols and related derivatives. Strategies for nucleophilic attack at carbon-3 or carbon-2. J. Org. Chem., 1985, 50(26), 5696-5704.
[http://dx.doi.org/10.1021/jo00350a051]
[94]
Ahman, J.; Somfai, P. Enantioselective total synthesis of (−)-indolizidines 209B and 209D via a highly efficient aza-[2, 3]-Wittig rearrangement of vinylaziridines. Tetrahedron, 1995, 51(35), 9747-9756.
[http://dx.doi.org/10.1016/0040-4020(95)00558-P]
[95]
Polniaszek, R.P.; Belmont, S.E. Enantioselective total syntheses of indolizidine alkaloids 167B and 209D. J. Org. Chem., 1990, 55(15), 4688-4693.
[http://dx.doi.org/10.1021/jo00302a038]
[96]
Åhman, J.; Somfai, P. Aza-[2, 3]-Wittig rearrangements of vinylaziridines as a novel entry to indolizidine alkaloids. Enantioselective total synthesis of indolizidine 209D. Tetrahedron Lett., 1995, 36(2), 303-306.
[http://dx.doi.org/10.1016/0040-4039(94)02236-5]
[97]
Mancuso, A.J.; Huang, S.L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem., 1978, 43(12), 2480-2482.
[http://dx.doi.org/10.1021/jo00406a041]
[98]
Oppolzer, W.; Siles, S.; Snowden, R.L.; Bakker, B.H.; Petrzilka, M. The regiochemistry of intramolecular n-alkenylnitrone additions: preparative and mechanistic implications. Tetrahedron Lett., 1979, 20(45), 4391-4394.
[http://dx.doi.org/10.1016/S0040-4039(01)86596-5]
[99]
House, H.O.; Manning, D.T.; Melillo, D.G. Lee, L.F.; Haynes, O.R.; Wilkes, B.E., Stereoselective synthesis of (.+-.)-indolizidines 167B, 205A, and 207A. Enantioselective synthesis of (-)-indolizidine 209B. J. Org. Chem., 1967, 41, 855-863.
[http://dx.doi.org/10.1021/jo00867a023]
[100]
Cahiez, G.; Alexakis, A.; Normant, J.F. Dérivés organomagnésiens ω-alcoolates: préparation et réactivité. Tetrahedron Lett., 1978, 19(33), 3013-3014.
[http://dx.doi.org/10.1016/S0040-4039(01)94926-3]
[101]
Tsunoda, T.; Yamamoto, H.; Goda, K.; Itô, S. Mitsunobu-type alkylation of p-toluenesulfonamide. A convenient new route to primary and secondary amines. Tetrahedron Lett., 1996, 37(14), 2457-2458.
[http://dx.doi.org/10.1016/0040-4039(96)00317-6]
[102]
Richey, H.G. Grignard Reagents: New Developments; Wiley Chichester, 2000.
[103]
Lopez, R.M.; Hays, D.S.; Fu, G.C. Bu3SnH-catalyzed Barton-McCombie deoxygenation of alcohols. J. Am. Chem. Soc., 1997, 119(29), 6949-6950.
[http://dx.doi.org/10.1021/ja971400y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy