Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

HIGHLIGHTS

A Brief Review on the Development of Novel Potentially Active Azetidin-2-ones Against Cancer

Author(s): Ligia S. da Silveira Pinto, Thatyana R. Alves Vasconcelos*, Claudia Regina B. Gomes and Marcus Vinícius N. de Souza

Volume 24, Issue 5, 2020

Page: [473 - 486] Pages: 14

DOI: 10.2174/1385272824666200303115444

Price: $65

Abstract

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.

Keywords: Azetidin-2-ones, β-lactams, biological activity, cancer, drugs, heterocycles.

Next »
Graphical Abstract

[1]
Katritzky, A.R. Preface. Tetrahedron, 1996, 52(9), 8.
[http://dx.doi.org/10.1016/S0040-4020(96)91317-4]
[2]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[3]
Joule, J.A. Natural products containing nitrogen heterocycles-some highlights 1990-2015. In: Advances in Heterocyclic Chemistry: Heterocyclic Chemistry in the 21st Century - A Tribute to Alan Katritzky; Scriven, E.F.V.; Ramsden, C.A., Eds.; Elsevier: Amsterdam, 2016; Vol. 119, pp. 81-106.
[4]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56, 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[5]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48(1), 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[6]
Wu, Y-J. Heterocycles and medicine: a survey of the heterocyclic drugs approved by the U.S. FDA from 2000 to Present. In: Progress in Heterocyclic Chemistry; Gribble, G.W.; Joule, J.A., Eds.; Elsevier: Amsterdam, 2012; Vol. 24, pp. 1-53.
[7]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[8]
Arya, N.; Jagdale, A.Y.; Patil, T.A.; Yeramwar, S.S.; Holikatti, S.S.; Dwivedi, J.; Shishoo, C.J.; Jain, K.S. The chemistry and biological potential of azetidin-2-ones. Eur. J. Med. Chem., 2014, 74, 619-656.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.002] [PMID: 24531200]
[9]
Gupta, A.; Halve, A.K. β-lactams: a mini review of their biological activity. Int. J. Pharm. Sci. Res., 2015, 6(3), 978-987.
[10]
Fisher, J.F.; Mobashery, S. The β-lactam (azetidin-2-one) as a privileged ring in medicinal chemistry. In: Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation; Bräse, S., Ed.; Royal Society of Chemistry: Cambridge, 2016; pp. 64-97.
[11]
De Rosa, M.; Vigliotta, G.; Palma, G.; Saturnino, C.; Soriente, A. Novel Penicillin-type analogues bearing a variable substituted 2-azetidinone ring at position 6: synthesis and biological evaluation. Molecules, 2015, 20(12), 22044-22057.
[http://dx.doi.org/10.3390/molecules201219828] [PMID: 26690391]
[12]
Giacomini, D.; Musumeci, R.; Galletti, P.; Martelli, G.; Assennato, L.; Sacchetti, G.; Guerrini, A.; Calaresu, E.; Martinelli, M.; Cocuzza, C. 4-Alkyliden-azetidinones modified with plant derived polyphenols: Antibacterial and antioxidant properties. Eur. J. Med. Chem., 2017, 140, 604-614.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.048] [PMID: 28992569]
[13]
Kerzare, D.R.; Menghani, S.S.; Khedekar, P.B. Synthesis, characterization, antidepressant activity and docking studies of some novel indole bearing azetidinone derivatives. Indian J. Pharm. Educ., 2018, 52(1), 110-121.
[http://dx.doi.org/10.5530/ijper.52.1.13]
[14]
Himaja, M.; Karigar, A.; Ramana, M.V.; Munirajasekhar, D.; Sikarwar, M.S. Synthesis of novel azetidinone derivatives as antitubercular agents. Lett. Drug Des. Discov., 2012, 9, 611-617.
[http://dx.doi.org/10.2174/157018012800673038]
[15]
Gowramma, B.; Praveen, T.K.; Kalirajan, R.; Babu, B. Synthesis of some novel 2-azetidinones/4-thiazolidinones bearing 1,3,4-thiadiazole nucleus and screening for its anti-imflammatory activity. Lett. Drug Des. Discov., 2016, 13, 676-683.
[http://dx.doi.org/10.2174/1570180813666151123235546]
[16]
Mehta, P.D.; Sengar, N.P.S.; Pathak, A.K. 2-Azetidinone--a new profile of various pharmacological activities. Eur. J. Med. Chem., 2010, 45(12), 5541-5560.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.035] [PMID: 20970895]
[17]
Abdulla, R.F.; Fuhr, K.H. Monocyclic antibiotic β-lactams. J. Med. Chem., 1975, 18(6), 625-627.
[http://dx.doi.org/10.1021/jm00240a022] [PMID: 807736]
[18]
Durckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K.H. Recent developments in the field of β-lactam antibiotics. Angew. Chem. Int. Ed. Engl., 1985, 24, 180-202.
[http://dx.doi.org/10.1002/anie.198501801]
[19]
Gupta, A.; Halve, A.K. Synthesis & antifungal screening of novel azetidin-2-ones. Open Chem. J., 2015, 2, 1-6.
[http://dx.doi.org/10.2174/1874842201502010001]
[20]
Chhajed, S.S.; Upasani, C.D. Synthesis and in-silico molecular docking simulation of 3-chloro-4-substituted1-(2-(1H-benzimidazol-2-yl)phenyl)-azetidin-2-ones as novel analgesic anti-inflammatory agent. Arab. J. Chem., 2016, 9, S1779-S1785.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.038]
[21]
Soni, P.K.; Shinde, C.P.; Halve, A.K. The chemistry and pharmacological potential of 2-azetidinones incorporated with halogen atoms and cyano groups: a review. World J. Pharm. Pharm. Sci., 2016, 5(3), 433-455.
[22]
Zhang, T.Y.; Hatfield, L.D. Cephalosporins In: Comprehensive Heterocyclic Chemistry II; Alan R., Katritzky.; Charles, W. Rees.; Eric F.V., Scriven., Eds.; Elsevier: Amsterdam, 1996; Vol. 1B, pp. 591-622.
[23]
Brynaert, J.M.; Brulé, C. Penicillins In: Comprehensive Heterocyclic Chemistry III; Alan R, Katritzky.; Christopher, A., Ramsden; Eric F.V., Scriven.; Richard, J.K, Taylor., Eds.; Elsevier: Amsterdam, 2008; Vol. 2, pp. 173-237.
[24]
Deshmukh, A.R.A.S.; Bhawal, B.M.; Krishnaswamy, D.; Govande, V.V.; Shinkre, B.A.; Jayanthi, A. Azetidin-2-ones, synthon for biologically important compounds. Curr. Med. Chem., 2004, 11(14), 1889-1920.
[http://dx.doi.org/10.2174/0929867043364874] [PMID: 15279573]
[25]
Palomo, C.; Aizpurua, J.M.; Ganboa, I.; Oiarbide, M. Synthesis of β-amino acids and their derivatives from β-lactams: update. In: Enantioselective Synthesis of β-Amino Acids; Juaristi, E.; Soloshonok, V.A., Eds.; John Wiley & Sons, Inc., 2005; pp. 477-494.
[http://dx.doi.org/10.1002/0471698482.ch20]
[26]
Ojima, I.; Delalopge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem. Soc. Rev., 1997, 26, 377-386.
[http://dx.doi.org/10.1039/CS9972600377]
[27]
Staudinger, H. Zur Kenntniss der Ketene. Diphenylketen. Liebigs Ann. Chem., 1907, 356, 51-123.
[http://dx.doi.org/10.1002/jlac.19073560106]
[28]
Kurteva, V.; Alexandrova, M. Constrained 1-phenylethyl amine analogues as chiral auxiliaries in stereoselective trans-β-lactam formation via Staudinger cycloaddition. J. Heterocycl. Chem., 2019, 56, 930-937.
[http://dx.doi.org/10.1002/jhet.3471]
[29]
Omidvari, Z.; Zarei, M. Synthesis of novel β-lactams from phenothiazin-10-ylacetic acid. J. Heterocycl. Chem., 2018, 55, 1085-1088.
[http://dx.doi.org/10.1002/jhet.3138]
[30]
Gilman, H.; Speeter, H. The Reformatsky reaction with benzalaniline. J. Am. Chem. Soc., 1943, 65(11), 2255-2256.
[http://dx.doi.org/10.1021/ja01251a503]
[31]
Kinugasa, M.; Hashimoto, S.J. The reactions of copper(I) phenylacetylide with nitrones. J.C.S. Chem. Comm., 1972, (8), 466-467.
[32]
Singh, G.S.; Sudheesh, S. Advances in synthesis of monocyclic β-lactams. ARKIVOC, 2014, 1, 337-385.
[33]
Kumar, Y.; Singh, P.; Bhargava, G. Recent developments in the synthesis of condensed β-lactams. RSC Advances, 2016, 6, 99220-99250.
[http://dx.doi.org/10.1039/C6RA20973D]
[34]
Pitts, C.R.; Lectka, T. Chemical synthesis of β-lactams: asymmetric catalysis and other recent advances. Chem. Rev., 2014, 114(16), 7930-7953.
[http://dx.doi.org/10.1021/cr4005549] [PMID: 24555548]
[35]
Stecko, S.; Furman, B.; Chmielewski, M. Kinugasa reaction: an ‘ugly duckling’ of β-lactam chemistry. Tetrahedron, 2014, 70, 7817-7844.
[http://dx.doi.org/10.1016/j.tet.2014.06.024]
[36]
Salunkhe, D.S.; Piste, P.B. A brief review on recent synthesis of 2-azetidinone derivatives. Int. J. Pharm. Sci. Res., 2014, 5(3), 666-689.
[37]
Elkanzi, N.A.A. Short review on synthesis of thiazolidinone and β-lactam. World J. Org. Chem., 2013, 1(2), 24-51.
[38]
Hosseyni, S.; Jarrahpour, A. Recent advances in β-lactam synthesis. Org. Biomol. Chem., 2018, 16(38), 6840-6852.
[http://dx.doi.org/10.1039/C8OB01833B] [PMID: 30209477]
[39]
Brandi, A.; Cicchi, S.; Cordero, F.M. Novel syntheses of azetidines and azetidinones. Chem. Rev., 2008, 108(9), 3988-4035.
[http://dx.doi.org/10.1021/cr800325e] [PMID: 18781723]
[40]
World Health Organization. https://www.who.int/cancer/en/ (Accessed September 18, 2019).
[41]
World Health Organization. http://www.who.int/mediacentre/factsheets/ fs297/en/ (Accessed September 18, 2019).
[42]
Zafar, S.N.; Siddiqui, A.H.; Channa, R.; Ahmed, S.; Javed, A.A.; Bafford, A. Estimating the global demand and delivery of cancer surgery. World J. Surg., 2019, 43(9), 2203-2210.
[http://dx.doi.org/10.1007/s00268-019-05035-6] [PMID: 31115586]
[44]
Arruebo, M.; Vilaboa, N.; Gutierrez, B.S.; Lambea, J.; Tres, A.; Valladares, M.; Fernández, A.G. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[45]
Smith, D.M.; Kazi, A.; Smith, L.; Long, T.E.; Heldreth, B.; Turos, E.; Dou, Q.P. A novel β-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol. Pharmacol., 2002, 61(6), 1348-1358.
[http://dx.doi.org/10.1124/mol.61.6.1348] [PMID: 12021396]
[46]
Kazi, A.; Hill, R.; Long, T.E.; Kuhn, D.J.; Turos, E.; Dou, Q.P. Novel N-thiolated β-lactam antibiotics selectively induce apoptosis in human tumor and transformed, but not normal or nontransformed, cells. Biochem. Pharmacol., 2004, 67(2), 365-374.
[http://dx.doi.org/10.1016/j.bcp.2003.09.017] [PMID: 14698048]
[47]
Patel, V.K.; Chouhan, K.S.; Singh, A.; Jain, D.K.; Veerasamy, R.; Singour, P.K.; Pawar, R.S.; Rajak, H. Development of structure activity correlation model on azetidin-2-ones as tubulin polymerization inhibitors. Lett. Drug Des. Discov., 2015, 12, 351-365.
[http://dx.doi.org/10.2174/1570180811666141010000110]
[48]
O’Boyle, N.M.; Carr, M.; Greene, L.M.; Bergin, O.; Nathwani, S.M.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J. Med. Chem., 2010, 53(24), 8569-8584.
[http://dx.doi.org/10.1021/jm101115u] [PMID: 21080725]
[49]
O’Boyle, N.M.; Greene, L.M.; Bergin, O.; Fichet, J.B.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis, evaluation and structural studies of antiproliferative tubulin-targeting azetidin-2-ones. Bioorg. Med. Chem., 2011, 19(7), 2306-2325.
[http://dx.doi.org/10.1016/j.bmc.2011.02.022] [PMID: 21397510]
[50]
Mikstacka, R.; Stefański, T.; Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[http://dx.doi.org/10.2478/s11658-013-0094-z] [PMID: 23818224]
[51]
Zhou, P.; Liu, Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Liang, Y.; Jiang, H.; Luo, C.; Liu, M.; Wang, Y. Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of Combretastatin A-4 binding to tubulin. J. Med. Chem., 2016, 59(22), 10329-10334.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01268] [PMID: 27805821]
[52]
Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; Liu, M.; Wang, Y. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem., 2018, 144, 817-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.004] [PMID: 29306206]
[53]
O’Boyle, N.M.; Greene, L.M.; Keely, N.O.; Wang, S.; Cotter, T.S.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical activities of antiproliferative amino acid and phosphate derivatives of microtubule-disrupting β-lactam combretastatins. Eur. J. Med. Chem., 2013, 62, 705-721.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.016] [PMID: 23454513]
[54]
O’Boyle, N.M.; Pollock, J.K.; Carr, M.; Knox, A.J.S.; Nathwani, S.M.; Wang, S.; Caboni, L.; Zisterer, D.M.; Meegan, M.J. β-Lactam estrogen receptor antagonists and a dual-targeting estrogen receptor/tubulin ligand. J. Med. Chem., 2014, 57(22), 9370-9382.
[http://dx.doi.org/10.1021/jm500670d] [PMID: 25369367]
[55]
Greene, T.F.; Wang, S.; Greene, L.M.; Nathwani, S.M.; Pollock, J.K.; Malebari, A.M.; McCabe, T.; Twamley, B.; O’Boyle, N.M.; Zisterer, D.M.; Meegan, M.J. Synthesis and biochemical evaluation of 3-phenoxy-1,4-diarylazetidin-2-ones as tubulin-targeting antitumor agents. J. Med. Chem., 2016, 59(1), 90-113.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01086] [PMID: 26680364]
[56]
Mousset, C.; Giraud, A.; Provot, O.; Hamze, A.; Bignon, J.; Liu, J-M.; Thoret, S.; Dubois, J.; Brion, J.D.; Alami, M. Synthesis and antitumor activity of benzils related to combretastatin A-4. Bioorg. Med. Chem. Lett., 2008, 18(11), 3266-3271.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.053] [PMID: 18477509]
[57]
Sheldon, J.E.; Dcona, M.M.; Lyons, C.E.; Hackett, J.C.; Hartman, M.C.T. Photoswitchable anticancer activity via trans-cis isomerization of a combretastatin A-4 analog. Org. Biomol. Chem., 2016, 14(1), 40-49.
[http://dx.doi.org/10.1039/C5OB02005K] [PMID: 26503632]
[58]
Elmeligie, S.; Taher, A.T.; Khalil, N.A.; El-Said, A.H. Synthesis and cytotoxic activity of certain trisubstituted azetidin-2-one derivatives as a cis-restricted combretastatin A-4 analogues. Arch. Pharm. Res., 2017, 40(1), 13-24.
[http://dx.doi.org/10.1007/s12272-016-0849-y] [PMID: 27747473]
[59]
Olazaran, F.E.; Rivera, G.; Vázquez, A.M.P.; Reyes, C.M.M.; Cabrera, A.S.; Rentería, I.B. Biological evaluation in vitro and in silico of azetidin-2-one derivatives as potential anticancer agents. ACS Med. Chem. Lett., 2016, 8(1), 32-37.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00313] [PMID: 28105271]
[60]
Nathwani, S-M.; Hughes, L.; Greene, L.M.; Carr, M.; O’Boyle, N.M.; McDonnell, S.; Meegan, M.J.; Zisterer, D.M. Novel cis-restricted β-lactam combretastatin A-4 analogues display anti-vascular and anti-metastatic properties in vitro. Oncol. Rep., 2013, 29(2), 585-594.
[http://dx.doi.org/10.3892/or.2012.2181] [PMID: 23232969]
[61]
Valtorta, S.; Nicolini, G.; Tripodi, F.; Meregalli, C.; Cavaletti, G.; Avezza, F.; Crippa, L.; Bertoli, G.; Sanvito, F.; Fusi, P.; Pagliarin, R.; Orsini, F.; Moresco, R.M.; Coccetti, P. A novel AMPK activator reduces glucose uptake and inhibits tumor progression in a mouse xenograft model of colorectal cancer. Invest. New Drugs, 2014, 32(6), 1123-1133.
[http://dx.doi.org/10.1007/s10637-014-0148-8] [PMID: 25134489]
[62]
Tripodi, F.; Dapiaggi, F.; Orsini, F.; Pagliarin, R.; Sello, G.; Coccetti, P. Synthesis and biological evaluation of new 3-amino-2-azetidinone derivatives as anti-colorectal cancer agents. MedChemComm, 2018, 9(5), 843-852.
[http://dx.doi.org/10.1039/C8MD00147B] [PMID: 30108973]
[63]
Santibáñez, F.O.; Bandyopadhyay, D.; Rosales, P.C.; Rivera, G.; Rentería, I.B. Stereochemical preference toward oncotarget: Design, synthesis and in vitro anticancer evaluation of diastereomeric β-lactams. Oncotarget, 2017, 8(23), 37773-37782.
[http://dx.doi.org/10.18632/oncotarget.18077] [PMID: 28562328]
[64]
Quan, H.; Liu, H.; Li, C.; Lou, L. 1,4-Diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) enhances the cytotoxicity of combretastatin A4 independently of mitogen-activated protein kinase kinase. J. Pharmacol. Exp. Ther., 2009, 330(1), 326-333.
[http://dx.doi.org/10.1124/jpet.109.153320] [PMID: 19377096]
[65]
Malebari, A.M.; Greene, L.M.; Nathwani, S.M.; Fayne, D.; O’Boyle, N.M.; Wang, S.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. β-Lactam analogues of combretastatin A-4 prevent metabolic inactivation by glucuronidation in chemoresistant HT-29 colon cancer cells. Eur. J. Med. Chem., 2017, 130, 261-285.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.049] [PMID: 28254699]
[66]
Zhang, Y. Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol. Nutr. Food Res., 2010, 54(1), 127-135.
[http://dx.doi.org/10.1002/mnfr.200900323] [PMID: 19960458]
[67]
Bose, C.; Guo, J.; Zimniak, L.; Srivastava, S.K.; Singh, S.P.; Zimniak, P.; Singh, S.V. Critical role of allyl groups and disulfide chain in induction of Pi class glutathione transferase in mouse tissues in vivo by diallyl disulfide, a naturally occurring chemopreventive agent in garlic. Carcinogenesis, 2002, 23(10), 1661-1665.
[http://dx.doi.org/10.1093/carcin/23.10.1661] [PMID: 12376475]
[68]
Geesala, R.; Gangasani, J.K.; Budde, M.; Balasubramanian, S.; Vaidya, J.R.; Das, A. 2-Azetidinones: Synthesis and biological evaluation as potential anti-breast cancer agents. Eur. J. Med. Chem., 2016, 124, 544-558.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.041] [PMID: 27608432]
[69]
Junior, C.V.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[70]
Zhao, Q.; Huang, G. Anticancer hybrids. In: Design of Hybrid Molecules for Drug Development; Decker, M., Ed.; Julius Maximilian University of Würzburg: Würzburg, 2017; pp. 193-218.
[http://dx.doi.org/10.1016/B978-0-08-101011-2.00007-6]
[71]
Lamaa, D.; Lin, H-P.; Zig, L.; Bauvais, C.; Bollot, G.; Bignon, J.; Levaique, H.; Pamlard, O.; Dubois, J.; Ouaissi, M.; Souce, M.; Kasselouri, A.; Saller, F.; Borgel, D.; Jayat-Vignoles, C.; Al-Mouhammad, H.; Feuillard, J.; Benihoud, K.; Alami, M.; Hamze, A. Design and synthesis of tubulin and histone deacetylase inhibitor based on iso-combretastatin A-4. J. Med. Chem., 2018, 61(15), 6574-6591.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00050] [PMID: 30004697]
[72]
Kayarmar, R.; Nagaraja, G.K.; Naik, P.; Manjunatha, H.; Revanasiddappa, B.C.; Arulmoli, T. Synthesis and characterization of novel imidazoquinoline based 2-azetidinones as potent antimicrobial and anticancer agents. J. Saudi Chem. Soc., 2017, 21, S434-S444.
[http://dx.doi.org/10.1016/j.jscs.2014.07.003]
[73]
Deep, A.; Kumar, P.; Narasimhan, B.; Meng, L.S.; Ramasamy, K.; Mishra, R.K.; Mani, V. Synthesis, antimicrobial and anticancer evaluation of 2-azetidinones clubbed with quinazolinone. Pharm. Chem. J., 2016, 50(1), 24-28.
[http://dx.doi.org/10.1007/s11094-016-1392-3]
[74]
Deep, A.; Kumar, P.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Mishra, R.K.; Mani, V. 2-Azetidinone derivatives: synthesis, antimicrobial, anticancer evaluation and QSAR studies. Acta Pol. Pharm., 2016, 73(1), 65-78.
[PMID: 27008802]
[75]
Sangu, S.; Kuchana, V. Synthesis and anti-microbial & anti-cancer evalution of some quinoline derivatives. World J. Pharm. Pharm. Sci., 2017, 6(10), 1184-1190.
[76]
Alegaon, S.G.; Parchure, P.; Araujo, L.D.; Salve, P.S.; Alagawadi, K.R.; Jalalpure, S.S.; Kumbar, V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem. Lett., 2017, 27(7), 1566-1571.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.043] [PMID: 28262527]
[77]
Khanam, R.; Kumar, R.; Hejazi, I.I.; Shahabuddin, S.; Meena, R.; Jayant, V.; Kumar, P.; Bhat, A.R.; Athar, F. Piperazine clubbed with 2-azetidinone derivatives suppresses proliferation, migration and induces apoptosis in human cervical cancer HeLa cells through oxidative stress mediated intrinsic mitochondrial pathway. Apoptosis, 2018, 23(2), 113-131.
[http://dx.doi.org/10.1007/s10495-018-1439-x] [PMID: 29349707]
[78]
Swamy, P.M.G.; Prasad, Y.R.; Ashvini, H.M.; Giles, D.; Shashidhar, B.V.; Agasimundin, Y.S. Synthesis, anticancer and molecular docking studies of benzofuran derivatives. Med. Chem. Res., 2015, 24, 3437-3452.
[http://dx.doi.org/10.1007/s00044-015-1391-z]
[79]
Borazjani, N.; Sepehri, S.; Behzadi, M.; Jarrahpour, A.; Rad, J.A.; Sasanipour, M.; Mohkam, M.; Ghasemi, Y.; Akbarizadeh, A.R.; Digiorgio, C.; Brunel, J.M.; Ghanbari, M.M.; Batta, G.; Turos, E. Three-component synthesis of chromeno β-lactam hybrids for inflammation and cancer screening. Eur. J. Med. Chem., 2019, 179, 389-403.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.036] [PMID: 31260892]
[80]
Fu, D.J.; Fu, L.; Liu, Y.C.; Wang, J.W.; Wang, Y.Q.; Han, B.K.; Li, X.R.; Zhang, C.; Li, F.; Song, J.; Zhao, B.; Mao, R.W.; Zhao, R.H.; Zhang, S.Y.; Zhang, L.; Zhang, Y.B.; Liu, H.M. Structure-activity relationship studies of β-lactam-azide analogues as orally active antitumor agents targeting the tubulin colchicine site. Sci. Rep., 2017, 7(1), 12788.
[http://dx.doi.org/10.1038/s41598-017-12912-4] [PMID: 28986548]
[81]
Payili, N.; Yennam, S.; Rekula, S.R.; Naidu, C.G.; Bobde, Y.; Ghosh, B. Design, synthesis, and evaluation of the anticancer properties of novel quinone bearing carbamyl β-lactam hybrids. J. Heterocycl. Chem., 2018, 55, 1358-1365.
[http://dx.doi.org/10.1002/jhet.3169]
[82]
Piens, N.; de Vreese, R.; de Neve, N.; Hecke, K.V.; Balzarini, J.; de Kimpe, N.; D’hooghe, M. Synthesis of novel thymine-β-lactam hybrids and evaluation of their antitumor activity. Syn., 2014, 46, 2436-2444.
[http://dx.doi.org/10.1055/s-0033-1338647]
[83]
Verma, V.A.; Saundane, A.R. Synthesis of some novel 5-(8-substituted- 11Hindolo[3,2-c]isoquinolin-5-ylthio)-1′,3′,4′-oxadiazol-2-amines bearing thiazolidinones and azetidinones as potential antimicrobial, antioxidant, antituberculosis, and anticancer agents. Polycycl. Aromat. Comp., 2019.
[http://dx.doi.org/10.1080/10406638.2019.1628782]
[84]
Rajasekaran, A.; Devi, K.S. Synthesis and biological evaluation of 1-(3-chloro-2-oxo-4-phenylazetidin-1-yl)-3-(2-oxo-2-(10H-phenothiazin-10-yl)ethyl)urea derivatives. Med. Chem. Res., 2013, 22, 2578-2588.
[http://dx.doi.org/10.1007/s00044-012-0255-z]
[85]
Patel, A.B.; Chikhalia, K.H.; Kumari, P. Study of new β-lactams-substituted s-triazine derivatives as potential bioactive agents. Med. Chem. Res., 2015, 24, 468-481.
[http://dx.doi.org/10.1007/s00044-014-1151-5]
[86]
Singh, G.S.; Al-kahraman, Y.M.S.A.; Mpadi, D.; Yasinzai, M. Synthesis, antimicrobial, and brine shrimps lethality assays of 3, 3-diaryl-4-(1-methyl-1H-indol-3-yl)azetidin-2-ones. J. Heterocycl. Chem., 2015, 52, 614-619.
[http://dx.doi.org/10.1002/jhet.2057]
[87]
Noolvi, M.; Agrawal, S.; Patel, H.; Badiger, A.; Gaba, M.; Zambre, A. Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole. Arab. J. Chem., 2014, 7, 219-226.
[http://dx.doi.org/10.1016/j.arabjc.2011.02.011]
[88]
Rashidi, M.; Islami, M.R.; Mahani, S.E. Design and stereoselective synthesis of novel β-lactone and β-lactams as potent anticancer agents on breast cancer cells. Tetrahedron, 2018, 74, 835-841.
[http://dx.doi.org/10.1016/j.tet.2017.12.044]
[89]
Kaboudin, M.B.A.B. Synthesis of a novel class of β-lactam derivatives of 1-aminophosphonates by Staudinger Ketene-imine [2+2]-cycloaddition reaction. Synthesis, 2010, 20, 3504-3508.
[http://dx.doi.org/10.1055/s-0030-1257889]
[90]
Mohammadi, S.; Birgani, S.A; Borji, M.; Kaboudin, B.; Vaezi, M. Diethyl [(3-phenoxy-2-oxo-4-phenyl-azetidin-1-yl)-phenyl-methyl]-phosphonate as a potent anticancer agent in chemo-differentiation therapy of acute promyelocytic leukemia. Eur. J. Pharmacol., 2019, 846, 79-85.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.003] [PMID: 30639798]
[91]
Gamage, S.A.; Spicer, J.A.; Atwell, G.J.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Structure-activity relationships for substituted bis(acridine-4-carboxamides): a new class of anticancer agents. J. Med. Chem., 1999, 42(13), 2383-2393.
[http://dx.doi.org/10.1021/jm980687m] [PMID: 10395479]
[92]
Seth, P.P.; Jefferson, E.A.; Risen, L.M.; Osgood, S.A. Identification of 2-aminobenzimidazole dimers as antibacterial agents. Bioorg. Med. Chem. Lett., 2003, 13(10), 1669-1672.
[http://dx.doi.org/10.1016/S0960-894X(03)00245-2] [PMID: 12729638]
[93]
Jeyadevan, J.P.; Bray, P.G.; Chadwick, J.; Mercer, A.E.; Byrne, A.; Ward, S.A.; Park, B.K.; Williams, D.P.; Cosstick, R.; Davies, J.; Higson, A.P.; Irving, E.; Posner, G.H.; O’Neill, P.M. Antimalarial and antitumor evaluation of novel C-10 non-acetal dimers of 10β-(2-hydroxyethyl)deoxoartemisinin. J. Med. Chem., 2004, 47(5), 1290-1298.
[http://dx.doi.org/10.1021/jm030974c] [PMID: 14971909]
[94]
Bérubé, G. Natural and synthetic biologically active dimeric molecules: anticancer agents, anti-HIV agents, steroid derivatives and opioid antagonists. Curr. Med. Chem., 2006, 13(2), 131-154.
[http://dx.doi.org/10.2174/092986706775197908] [PMID: 16472210]
[95]
Meenakshisundaram, S.; Manickam, M.; Vinayagam, V. Synthesis, antibacterial and anticancer activity of novel bis-azetidinones. J. Chem. Pharm. Res., 2016, 8(2), 733-742.
[96]
Moraes, D.F.C.; de Mesquita, L.S.S.; do Amaral, F.M.M.; de Sousa, R.M.N.; Malik, S. Anticancer drugs from plants. In: Biotechnology and Production of Anti-Cancer Compounds; Malik, S., Ed.; Springer: New York, 2017; pp. 121-142.
[http://dx.doi.org/10.1007/978-3-319-53880-8_5]
[97]
Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: from folklore to practice. Front. Plant Sci., 2015, 6(799), 799.
[http://dx.doi.org/10.3389/fpls.2015.00799] [PMID: 26483815]
[98]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[99]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Impact of natural products on developing new anti-cancer agents. Chem. Rev., 2009, 109(7), 3012-3043.
[http://dx.doi.org/10.1021/cr900019j] [PMID: 19422222]
[100]
Chimento, A.; Sala, M.; Gomez-Monterrey, I.M.; Musella, S.; Bertamino, A.; Caruso, A.; Sinicropi, M.S.; Sirianni, R.; Puoci, F.; Parisi, O.I.; Campana, C.; Martire, E.; Novellino, E.; Saturnino, C.; Campiglia, P.; Pezzi, V. Biological activity of 3-chloro-azetidin-2-one derivatives having interesting antiproliferative activity on human breast cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(23), 6401-6405.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.054] [PMID: 24119558]
[101]
Galletti, P.; Soldati, R.; Pori, M.; Durso, M.; Tolomelli, A.; Gentilucci, L.; Dattoli, S.D.; Baiula, M.; Spampinato, S.; Giacomini, D. Targeting integrins αvβ3 and α5β1 with new β-lactam derivatives. Eur. J. Med. Chem., 2014, 83, 284-293.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.041] [PMID: 24973662]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy