Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Fluoxetine Protects against Dendritic Spine Loss in Middle-aged APPswe/PSEN1dE9 Double Transgenic Alzheimer’s Disease Mice

Author(s): Jing Ma, Yuan Gao, Wei Tang, Wei Huang and Yong Tang*

Volume 17, Issue 1, 2020

Page: [93 - 103] Pages: 11

DOI: 10.2174/1567205017666200213095419

Price: $65

Abstract

Background: Studies have suggested that cognitive impairment in Alzheimer’s disease (AD) is associated with dendritic spine loss, especially in the hippocampus. Fluoxetine (FLX) has been shown to improve cognition in the early stage of AD and to be associated with diminishing synapse degeneration in the hippocampus. However, little is known about whether FLX affects the pathogenesis of AD in the middle-tolate stage and whether its effects are correlated with the amelioration of hippocampal dendritic dysfunction. Previously, it has been observed that FLX improves the spatial learning ability of middleaged APP/PS1 mice.

Objective: In the present study, we further characterized the impact of FLX on dendritic spines in the hippocampus of middle-aged APP/PS1 mice.

Results: It has been found that the numbers of dendritic spines in dentate gyrus (DG), CA1 and CA2/3 of hippocampus were significantly increased by FLX. Meanwhile, FLX effectively attenuated hyperphosphorylation of tau at Ser396 and elevated protein levels of postsynaptic density 95 (PSD-95) and synapsin-1 (SYN-1) in the hippocampus.

Conclusion: These results indicated that the enhanced learning ability observed in FLX-treated middle-aged APP/PS1 mice might be associated with remarkable mitigation of hippocampal dendritic spine pathology by FLX and suggested that FLX might be explored as a new strategy for therapy of AD in the middle-to-late stage.

Keywords: Fluoxetine, dendritic spine, hippocampus, learning ability, Alzheimer's disease, neurodegenerative disease.

[1]
Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 298(5594): 789-91. (2002).
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[2]
Boros BD, Greathouse KM, Gentry EG, Curtis KA, Birchall EL, Gearing M, et al. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol 82(4): 602-14. (2017).
[http://dx.doi.org/10.1002/ana.25049] [PMID: 28921611]
[3]
Terry RD, Masliah E, Salmon DP, DeTeresa R, Hill R, Hansen LA, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4): 572-80. (1991).
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[4]
Carlisle HJ, Kennedy MB. Spine architecture and synaptic plasticity. Trends Neurosci 28(4): 182-7. (2005).
[http://dx.doi.org/10.1016/j.tins.2005.01.008] [PMID: 15808352]
[5]
Fortin DA, Srivastava T, Soderling TR. Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist 18(4): 326-41. (2012).
[http://dx.doi.org/10.1177/1073858411407206] [PMID: 21670426]
[6]
Parajuli LK, Tanaka S, Okabe S. Insights into age-old questions of new dendritic spines: From form to function. Brain Res Bull 129: 3-11. (2017).
[http://dx.doi.org/10.1016/j.brainresbull.2016.07.014] [PMID: 27491624]
[7]
Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 130(1): 1-19. (2015).
[http://dx.doi.org/10.1007/s00401-015-1449-5] [PMID: 26063233]
[8]
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3): 285-93. (2011).
[http://dx.doi.org/10.1038/nn.2741] [PMID: 21346746]
[9]
Wong DT, Perry KW, Bymaster FP. Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4(9): 764-74. (2005).
[http://dx.doi.org/10.1038/nrd1821] [PMID: 16121130]
[10]
Mowla A, Mosavinasab M, Pani A. Does fluoxetine have any effect on the cognition of patients with mild cognitive impairment? A double-blind, placebo-controlled, clinical trial. J Clin Psychopharmacol 27(1): 67-70. (2007).
[http://dx.doi.org/10.1097/JCP.0b013e31802e0002] [PMID: 17224716]
[11]
Dong H, Goico B, Martin M, Csernansky CA, Bertchume A, Csernansky JG. Modulation of hippocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127(3): 601-9. (2004).
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.040] [PMID: 15283960]
[12]
Wang J, Zhang Y, Xu H, Zhu S, Wang H, He J, et al. Fluoxetine improves behavioral performance by suppressing the production of soluble β-amyloid in APP/PS1 mice. Curr Alzheimer Res 11(7): 672-80. (2014).
[http://dx.doi.org/10.2174/1567205011666140812114715] [PMID: 25115542]
[13]
Qiao J, Wang J, Wang H, Zhang Y, Zhu S, Adilijiang A, et al. Regulation of astrocyte pathology by fluoxetine prevents the deterioration of Alzheimer phenotypes in an APP/PS1 mouse model. Glia 64(2): 240-54. (2016).
[http://dx.doi.org/10.1002/glia.22926] [PMID: 26446044]
[14]
Jin L, Gao LF, Sun DS, Wu H, Wang Q, Ke D, et al. Long-term ameliorative effects of the antidepressant fluoxetine exposure on cognitive deficits in 3 × TgAD mice. Mol Neurobiol 54(6): 4160-71. (2017).
[http://dx.doi.org/10.1007/s12035-016-9952-9] [PMID: 27324897]
[15]
Sun DS, Gao LF, Jin L, Wu H, Wang Q, Zhou Y, et al. Fluoxetine administration during adolescence attenuates cognitive and synaptic deficits in adult 3×TgAD mice. Neuropharmacology 126: 200-12. (2017).
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.037] [PMID: 28911966]
[16]
Huang M, Liang Y, Chen H, Xu B, Chai C, Xing P. The role of fluoxetine in activating Wnt/ β-Catenin signaling and repressing β-Amyloid production in an Alzheimer mouse model. Front Aging Neurosci 10: 164. (2018).
[http://dx.doi.org/10.3389/fnagi.2018.00164] [PMID: 29910725]
[17]
Ma J, Gao Y, Jiang L, Chao FL, Huang W, Zhou CN, et al. Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer’s disease mice. Oncotarget 8(17): 27676-92. (2017).
[http://dx.doi.org/10.18632/oncotarget.15398] [PMID: 28430602]
[18]
Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, Eersel JV, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142(3): 387-97. (2010).
[http://dx.doi.org/10.1016/j.cell.2010.06.036] [PMID: 20655099]
[19]
Ittner A, Ittner LM. Dendritic tau in Alzheimer’s disease. Neuron 99(1): 13-27. (2018).
[http://dx.doi.org/10.1016/j.neuron.2018.06.003] [PMID: 30001506]
[20]
Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6): 1067-81. (2010).
[http://dx.doi.org/10.1016/j.neuron.2010.11.030] [PMID: 21172610]
[21]
Hao J, Janssen WG, Tang Y, Roberts JA, McKay H, Lasley B, et al. Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. J Comp Neurol 465(4): 540-50. (2003).
[http://dx.doi.org/10.1002/cne.10837] [PMID: 12975814]
[22]
Tang Y, Janssen WG, Hao J, Roberts JA, McKay H, Lasley B, et al. Estrogen replacement increases spinophilin-immunoreactive spine number in the prefrontal cortex of female rhesus monkeys. Cereb Cortex 14(2): 215-23. (2004).
[http://dx.doi.org/10.1093/cercor/bhg121] [PMID: 14704219]
[23]
West MJ, Slomianka L, Gundersen HJ. Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4): 482-97. (1991).
[http://dx.doi.org/10.1002/ar.1092310411] [PMID: 1793176]
[24]
Paxinos G, Franklin KB. The mouse brain in stereotaxic coordinates. Gulf Professional Publishing. 2004..
[25]
Heggland I, Storkaas IS, Soligard HT, Kobro-Flatmoen A, Witter MP. Stereological estimation of neuron number and plaque load in the hippocampal region of a transgenic rat model of Alzheimer’s disease. Eur J Neurosci 41(9): 1245-62. (2015).
[http://dx.doi.org/10.1111/ejn.12876] [PMID: 25808554]
[26]
Gundersen HJ, Jensen EB, Kiêu K, Nielsen J. The efficiency of systematic sampling in stereology--reconsidered. J Microsc 193(Pt 3): 199-211. (1999).
[http://dx.doi.org/10.1046/j.1365-2818.1999.00457.x] [PMID: 10348656]
[27]
Ouimet CC, Katona I, Allen P, Freund TF, Greengard P. Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in dendritic spines. J Comp Neurol 479(4): 374-88. (2004).
[http://dx.doi.org/10.1002/cne.20313] [PMID: 15514983]
[28]
Vallejo D, Codocedo JF, Inestrosa NC. Posttranslational modifications regulate the postsynaptic localization of PSD-95. Mol Neurobiol 54(3): 1759-76. (2017).
[http://dx.doi.org/10.1007/s12035-016-9745-1] [PMID: 26884267]
[29]
Thiel G. Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol 3(1): 87-95. (1993).
[http://dx.doi.org/10.1111/j.1750-3639.1993.tb00729.x] [PMID: 7903586]
[30]
2018 Alzheimer’s disease facts and figures. Alzheimers Dement 12: 459-509. (2018).
[31]
Cummings J. Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci 11(2): 147-52. (2018).
[http://dx.doi.org/10.1111/cts.12491] [PMID: 28767185]
[32]
Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17(3): 381-6. (2007).
[http://dx.doi.org/10.1016/j.conb.2007.04.009] [PMID: 17498943]
[33]
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94(1): 141-88. (2014).
[http://dx.doi.org/10.1152/physrev.00012.2013] [PMID: 24382885]
[34]
Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, et al. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 65(5): 392-400. (2009).
[http://dx.doi.org/10.1016/j.biopsych.2008.09.031] [PMID: 19006787]
[35]
Kempermann G, Kronenberg G. Depressed new neurons--adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54(5): 499-503. (2003).
[http://dx.doi.org/10.1016/S0006-3223(03)00319-6] [PMID: 12946878]
[36]
Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron 96(1): 43-55. (2017).
[http://dx.doi.org/10.1016/j.neuron.2017.08.008] [PMID: 28957675]
[37]
Bourne JN, Harris KM. Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31: 47-67. (2008).
[http://dx.doi.org/10.1146/annurev.neuro.31.060407.125646] [PMID: 18284372]
[38]
Tackenberg C, Ghori A, Brandt R. Thin, stubby or mushroom: spine pathology in Alzheimer’s disease. Curr Alzheimer Res 6(3): 261-8. (2009).
[http://dx.doi.org/10.2174/156720509788486554] [PMID: 19519307]
[39]
Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, Saido T, et al. Neuronal store-operated calcium entry and mushroom spine loss in Amyloid precursor protein knock-in mouse model of Alzheimer’s disease. J Neurosci 35(39): 13275-86. (2015).
[http://dx.doi.org/10.1523/JNEUROSCI.1034-15.2015] [PMID: 26424877]
[40]
Zhang H, Sun S, Wu L, Pchitskaya E, Zakharova O, Tacer KF, et al. Store-operated calcium channel complex in postsynaptic spines: a new therapeutic target for Alzheimer’s disease Treatment. J Neurosci 36(47): 11837-50. (2016).
[http://dx.doi.org/10.1523/JNEUROSCI.1188-16.2016] [PMID: 27881772]
[41]
Borczyk M. Śliwiń ska MA, Caly A, Bernas T, Radwanska K, 2019. Neuronal plasticity affects correlation between the size of dendritic spine and its postsynaptic density. Sci Rep 9(1): 1963. (2019).
[42]
Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It’s all about tau. Prog Neurobiol 175: 54-76. (2019).
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.005] [PMID: 30605723]
[43]
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 133(5): 665-704. (2017).
[http://dx.doi.org/10.1007/s00401-017-1707-9] [PMID: 28386764]
[44]
Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci 17(1): 5-21. (2016).
[http://dx.doi.org/10.1038/nrn.2015.1] [PMID: 26631930]
[45]
Lau DH, Hogseth M, Phillips EC, O’Neill MJ, Pooler AM, Noble W, et al. Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol Commun 4(1): 49. (2016).
[http://dx.doi.org/10.1186/s40478-016-0317-4] [PMID: 27193083]
[46]
Nygaard HB. Targeting Fyn kinase in Alzheimer’s disease. Biol Psychiatry 83(4): 369-76. (2018).
[http://dx.doi.org/10.1016/j.biopsych.2017.06.004] [PMID: 28709498]
[47]
Khan SS, Bloom GS. Tau: The center of a signaling nexus in Alzheimer’s disease. Front Neurosci 10: 31. (2016).
[http://dx.doi.org/10.3389/fnins.2016.00031] [PMID: 26903798]
[48]
Xia D, Li C, Götz J. Pseudophosphorylation of Tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines. Biochim Biophys Acta 1852(5): 913-24. (2015).
[http://dx.doi.org/10.1016/j.bbadis.2014.12.017] [PMID: 25558816]
[49]
Hunter JM, Bowers WJ, Maarouf CL, Mastrangelo MA, Daugs ID, Kokjohn TA, et al. Biochemical and morphological characterization of the AβPP/PS/tau triple transgenic mouse model and its relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 27(2): 361-76. (2011).
[http://dx.doi.org/10.3233/JAD-2011-110608] [PMID: 21860086]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy