Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Chicken CATH-2 Increases Antigen Presentation Markers on Chicken Monocytes and Macrophages

Author(s): Marina D. Kraaij, Albert van Dijk, Maaike R. Scheenstra, Roel M. van Harten, Henk P. Haagsman and Edwin J.A. Veldhuizen*

Volume 27, Issue 1, 2020

Page: [60 - 66] Pages: 7

DOI: 10.2174/0929866526666190730125525

Price: $65

Abstract

Background: Cathelicidins are a family of Host Defense Peptides (HDPs), that play an important role in the innate immune response. They exert both broad-spectrum antimicrobial activity against pathogens, and strong immunomodulatory functions that affect the response of innate and adaptive immune cells.

Objective: The aim of this study was to investigate immunomodulation by the chicken cathelicidin CATH-2 and compare its activities to those of the human cathelicidin LL-37.

Methods: Chicken macrophages and chicken monocytes were incubated with cathelicidins. Activation of immune cells was determined by measuring surface markers Mannose Receptor Ctype 1 (MRC1) and MHC-II. Cytokine production was measured by qPCR and nitric oxide production was determined using the Griess assay. Finally, the effect of cathelicidins on phagocytosis was measured using carboxylate-modified polystyrene latex beads.

Results: CATH-2 and its all-D enantiomer D-CATH-2 increased MRC1 and MHC-II expression, markers for antigen presentation, on primary chicken monocytes, whereas LL-37 did not. D-CATH- 2 also increased the MRC1 and MHC-II expression if a chicken macrophage cell line (HD11 cells) was used. In addition, LPS-induced NO production by HD11 cells was inhibited by CATH-2 and D-CATH-2.

Conclusion: These results are a clear indication that CATH-2 (and D-CATH-2) affect the activation state of monocytes and macrophages, which leads to optimization of the innate immune response and enhancement of the adaptive immune response.

Keywords: Host defense peptide, MRC1, antigen presentation, HD11 cells, innate immunity, cathelicidins.

Graphical Abstract

[1]
van Dijk, A.; Molhoek, E.M.; Veldhuizen, E.J.; Bokhoven, J.L.; Wagendorp, E.; Bikker, F.; Haagsman, H.P. Identification of chicken cathelicidin-2 core elements involved in antibacterial and immunomodulatory activities. Mol. Immunol., 2009, 46(13), 2465-2473.
[http://dx.doi.org/10.1016/j.molimm.2009.05.019] [PMID: 19524300]
[2]
Veldhuizen, E.J.; Brouwer, E.C.; Schneider, V.A.; Fluit, A.C. Chicken cathelicidins display antimicrobial activity against multiresistant bacteria without inducing strong resistance. PLoS One, 2013, 8(4)e61964
[http://dx.doi.org/10.1371/journal.pone.0061964] [PMID: 23613986]
[3]
Gwyer Findlay, E.; Currie, S.M.; Davidson, D.J. Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs, 2013, 27(5), 479-493.
[http://dx.doi.org/10.1007/s40259-013-0039-0]
[4]
Benincasa, M.; Scocchi, M.; Pacor, S.; Tossi, A.; Nobili, D.; Basaglia, G.; Busetti, M.; Gennaro, R. Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J. Antimicrob. Chemother., 2006, 58(5), 950-959.
[http://dx.doi.org/10.1093/jac/dkl382] [PMID: 17023499]
[5]
Zanetti, M. The role of cathelicidins in the innate host defenses of mammals. Curr. Issues Mol. Biol., 2005, 7(2), 179-196.
[PMID: 16053249]
[6]
Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: beyond antimicrobial activity. Nat. Rev. Immunol., 2016, 16(5), 321-334.
[http://dx.doi.org/10.1038/nri.2016.29] [PMID: 27087664]
[7]
Cuperus, T.; Coorens, M.; van Dijk, A.; Haagsman, H.P. Avian host defense peptides. Dev. Comp. Immunol., 2013, 41(3), 352-369.
[http://dx.doi.org/10.1016/j.dci.2013.04.019] [PMID: 23644014]
[8]
Choi, K.Y.; Chow, L.N.; Mookherjee, N. Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J. Innate Immun., 2012, 4(4), 361-370.
[http://dx.doi.org/10.1159/000336630] [PMID: 22739631]
[9]
van Harten, R.M.; van Woudenbergh, E.; van Dijk, A.; Haagsman, H.P. Cathelicidins: immunomodulatory antimicrobials. Vaccines (Basel), 2018, 6(3)E63
[http://dx.doi.org/10.3390/vaccines6030063] [PMID: 30223448]
[10]
Vandamme, D.; Landuyt, B.; Luyten, W.; Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell. Immunol., 2012, 280(1), 22-35.
[http://dx.doi.org/10.1016/j.cellimm.2012.11.009] [PMID: 23246832]
[11]
Goitsuka, R.; Chen, C.L.; Benyon, L.; Asano, Y.; Kitamura, D.; Cooper, M.D. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proc. Natl. Acad. Sci. USA, 2007, 104(38), 15063-15068.
[http://dx.doi.org/10.1073/pnas.0707037104] [PMID: 17827276]
[12]
Lynn, D.J.; Higgs, R.; Gaines, S.; Tierney, J.; James, T.; Lloyd, A.T.; Fares, M.A.; Mulcahy, G.; O’Farrelly, C. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics, 2004, 56(3), 170-177.
[http://dx.doi.org/10.1007/s00251-004-0675-0] [PMID: 15148642]
[13]
Xiao, Y.; Cai, Y.; Bommineni, Y.R.; Fernando, S.C.; Prakash, O.; Gilliland, S.E.; Zhang, G. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J. Biol. Chem., 2006, 281(5), 2858-2867.
[http://dx.doi.org/10.1074/jbc.M507180200] [PMID: 16326712]
[14]
van Dijk, A.; Veldhuizen, E.J.; van Asten, A.J.; Haagsman, H.P. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet. Immunol. Immunopathol., 2005, 106(3-4), 321-327.
[http://dx.doi.org/10.1016/j.vetimm.2005.03.003] [PMID: 15963828]
[15]
Beaumont, P.E.; McHugh, B.; Gwyer Findlay, E.; Mackellar, A.; Mackenzie, K.J.; Gallo, R.L.; Govan, J.R.; Simpson, A.J.; Davidson, D.J. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo. PLoS One, 2014, 9(6)e99029
[http://dx.doi.org/10.1371/journal.pone.0099029] [PMID: 24887410]
[16]
Bommineni, Y.R.; Achanta, M.; Alexander, J.; Sunkara, L.T.; Ritchey, J.W.; Zhang, G. A fowlicidin-1 analog protects mice from lethal infections induced by methicillin-resistant Staphylococcus aureus. Peptides, 2010, 31(7), 1225-1230.
[http://dx.doi.org/10.1016/j.peptides.2010.03.037] [PMID: 20381563]
[17]
Schneider, V.A.F.; van Dijk, A.; van der Sar, A.M.; Kraaij, M.D.; Veldhuizen, E.J.A.; Haagsman, H.P. Prophylactic administration of chicken cathelicidin-2 boosts zebrafish embryonic innate immunity. Dev. Comp. Immunol., 2016, 60, 108-114.
[http://dx.doi.org/10.1016/j.dci.2016.02.023] [PMID: 26920462]
[18]
Cuperus, T.; van Dijk, A.; Matthijs, M.G.; Veldhuizen, E.J.; Haagsman, H.P. Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Sci. Rep., 2016, 6, 26622.
[http://dx.doi.org/10.1038/srep26622] [PMID: 27229866]
[19]
Scott, M.G.; Dullaghan, E.; Mookherjee, N.; Glavas, N.; Waldbrook, M.; Thompson, A.; Wang, A.; Lee, K.; Doria, S.; Hamill, P.; Yu, J.J.; Li, Y.; Donini, O.; Guarna, M.M.; Finlay, B.B.; North, J.R.; Hancock, R.E. An anti-infective peptide that selectively modulates the innate immune response. Nat. Biotechnol., 2007, 25(4), 465-472.
[http://dx.doi.org/10.1038/nbt1288] [PMID: 17384586]
[20]
Kraaij, M.D.; van Dijk, A.; Haagsman, H.P. CATH-2 and LL-37 increase mannose receptor expression, antigen presentation and the endocytic capacity of chicken mononuclear phagocytes. Mol. Immunol., 2017, 90, 118-125.
[http://dx.doi.org/10.1016/j.molimm.2017.07.005] [PMID: 28715682]
[21]
Bommineni, Y.R.; Pham, G.H.; Sunkara, L.T.; Achanta, M.; Zhang, G. Immune regulatory activities of fowlicidin-1, a cathelicidin host defense peptide. Mol. Immunol., 2014, 59(1), 55-63.
[http://dx.doi.org/10.1016/j.molimm.2014.01.004] [PMID: 24491488]
[22]
Davidson, D.J.; Currie, A.J.; Reid, G.S.; Bowdish, D.M.; MacDonald, K.L.; Ma, R.C.; Hancock, R.E.; Speert, D.P. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol., 2004, 172(2), 1146-1156.
[http://dx.doi.org/10.4049/jimmunol.172.2.1146] [PMID: 14707090]
[23]
Nijnik, A.; Pistolic, J.; Wyatt, A.; Tam, S.; Hancock, R.E. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J. Immunol., 2009, 183(9), 5788-5798.
[http://dx.doi.org/10.4049/jimmunol.0901491] [PMID: 19812202]
[24]
Adler, H.E.; DaMassa, A.J. Toxicity of endotoxin to chicks. Avian Dis., 1979, 23(1), 174-178.
[http://dx.doi.org/10.2307/1589684] [PMID: 486001]
[25]
Berczi, I.; Bertók, L.; Bereznai, T. Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species. Can. J. Microbiol., 1966, 12(5), 1070-1071.
[http://dx.doi.org/10.1139/m66-143] [PMID: 5339644]
[26]
Brown, K.L.; Poon, G.F.; Birkenhead, D.; Pena, O.M.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.; Johnson, P. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol., 2011, 186(9), 5497-5505.
[http://dx.doi.org/10.4049/jimmunol.1002508] [PMID: 21441450]
[27]
Ciornei, C.D.; Sigurdardóttir, T.; Schmidtchen, A.; Bodelsson, M. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob. Agents Chemother., 2005, 49(7), 2845-2850.
[http://dx.doi.org/10.1128/AAC.49.7.2845-2850.2005] [PMID: 15980359]
[28]
Bhunia, A.; Mohanram, H.; Bhattacharjya, S. Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy. Biopolymers, 2009, 92(1), 9-22.
[http://dx.doi.org/10.1002/bip.21104] [PMID: 18844294]
[29]
Veldhuizen, E.J.A.; Scheenstra, M.R.; Tjeerdsma-van Bokhoven, J.L.M.; Coorens, M.; Schneider, V.A.F.; Bikker, F.J.; van Dijk, A.; Haagsman, H.P. Antimicrobial and immunomodulatory activity of PMAP-23 derived peptides. Protein Pept. Lett., 2017, 24(7), 609-616.
[http://dx.doi.org/10.2174/0929866524666170428150925] [PMID: 28462713]
[30]
van Dijk, A.; van Eldik, M.; Veldhuizen, E.J.; Tjeerdsma-van Bokhoven, H.L.; de Zoete, M.R.; Bikker, F.J.; Haagsman, H.P. Immunomodulatory and anti-inflammatory activities of chicken Cathelicidin-2 derived peptides. PLoS One, 2016, 11(2)e0147919
[http://dx.doi.org/10.1371/journal.pone.0147919] [PMID: 26848845]
[31]
Alkie, T.N.; Taha-Abdelaziz, K.; Barjesteh, N.; Bavananthasivam, J.; Hodgins, D.C.; Sharif, S. Characterization of innate responses induced by PLGA encapsulated- and soluble TLR ligands in vitro and in vivo in chickens. PLoS One, 2017, 12(1)e0169154
[http://dx.doi.org/10.1371/journal.pone.0169154] [PMID: 28045984]
[32]
Wan, M.; van der Does, A.M.; Tang, X.; Lindbom, L.; Agerberth, B.; Haeggström, J.Z. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J. Leukoc. Biol., 2014, 95(6), 971-981.
[http://dx.doi.org/10.1189/jlb.0513304] [PMID: 24550523]
[33]
Coorens, M.; Scheenstra, M.R.; Veldhuizen, E.J.; Haagsman, H.P. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Sci. Rep., 2017, 7, 40874.
[http://dx.doi.org/10.1038/srep40874] [PMID: 28102367]
[34]
Coorens, M.; van Dijk, A.; Bikker, F.; Veldhuizen, E.J.; Haagsman, H.P. Importance of endosomal cathelicidin degradation to enhance DNA-induced chicken macrophage activation. J. Immunol., 2015, 195(8), 3970-3977.
[http://dx.doi.org/10.4049/jimmunol.1501242] [PMID: 26378074]
[35]
Coorens, M.; Schneider, V.A.F.; de Groot, A.M.; van Dijk, A.; Meijerink, M.; Wells, J.M.; Scheenstra, M.R.; Veldhuizen, E.J.A.; Haagsman, H.P. Cathelicidins inhibit Escherichia coli-Induced TLR2 and TLR4 activation in a viability-dependent manner. J. Immunol., 2017, 199(4), 1418-1428.
[http://dx.doi.org/10.4049/jimmunol.1602164] [PMID: 28710255]
[36]
Coorens, M.; Banaschewski, B.J.H.; Baer, B.J.; Yamashita, C.; van Dijk, A.; Haagsman, H.P.; Veldhuizen, R.A.W.; Veldhuizen, E.J.A. Killing of Pseudomonas aeruginosa by chicken cathelicidin-2 is immunogenically silent, preventing lung inflammation in vivo. Infect. Immun., 2017, 85(12), e00546-e17.
[http://dx.doi.org/10.1128/IAI.00546-17] [PMID: 28947647]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy