Abstract
Lipid nanoparticles loading the sunscreen 2,4-dihydroxybenzophenone (DHB-LNPs) have been prepared by high-pressure homogenization and ultrasound techniques. The combination of both methodologies improves the entrapment efficiency percentage reaching 95%. The morphology of the DHB-LNPs was studied with scanning electron microscopy (SEM) and atomic force microscopy (AFM), while the surface and interior chemical composition was analyzed by X-ray photoelectron spectroscopy (XPS) at different irradiation times. Conductivity of aqueous dispersions of the DHBLNPs was determined by impedance spectroscopy. A possible DHB-LNPs application related to drug release in a system simulating skin-properties is shown.
Keywords: Lipid nanoparticles, 2, 4-dihydroxybenzophenone, homogenizer, ultrasounds, SEM, XPS, impedance spectroscopy, photoelectron, atomic force microscopy