Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

64Cu Labeled AmBaSar-RGD2 for micro-PET Imaging of Integrin αvβ3 Expression

Author(s): Hancheng Cai, Zibo Li, Chiun-Wei Huang, Ryan Park and Peter S. Conti

Volume 4, Issue 1, 2011

Page: [68 - 74] Pages: 7

DOI: 10.2174/1874471011104010068

Price: $65

Abstract

Integrin αvβ3 plays a critical role in tumor-induced angiogenesis and metastasis. Previously, a 64Cu-AmBaSar- RGD monomer with high in vivo stability compared with 64Cu-DOTA-RGD was developed for integrin αvβ3 PET imaging. It has been established that dimeric RGD peptides have higher receptor-binding affinity and superior in vivo kinetics compared with monomeric RGD peptides due to the polyvalency effect. In this context, we synthesized and evaluated 64Cu-labeled AmBaSar dimeric RGD conjugates (64Cu-AmBaSar-RGD2) for PET imaging of integrin αvβ3 expression. The dimeric RGD peptide was conjugated with a cage-like chelator AmBaSar and labeled with 64Cu. Cell binding, microPET imaging, receptor blocking, and biodistribution studies of 64Cu-AmBaSar-RGD2 were conducted in the U87MG human glioblastoma xenograft model. AmBaSar-RGD2 conjugate was obtained in reasonable yield (45.0 ± 2.5%, n= 4) and the identity was confirmed by HPLC and MS (found 1779.8, calculated m/z for [M+H]+ M: C81H125N27O19 1779.9). 64Cu-AmBaSar-RGD2 was obtained with high radiochemical yield (92.0 ± 1.3%) and purity (≥ 98.0%) under mild conditions (pH 5.0∼5.5, 23∼37 °C) in 30 min. The specific activity of 64Cu-AmBaSar-RGD2 was estimated to be 15-22 GBq/μmol at the end of synthesis. Based on microPET imaging and biodistribution studies, 64Cu-AmBaSar-RGD2 has demonstrated higher tumor uptake at selected time points than 64Cu-AmBaSar-RGD. At 20 h p.i., the tumor uptake reached 0.65 ± 0.05 %ID/g for 64Cu-AmBaSar-RGD and 1.76 ± 0.38 %ID/g for 64Cu-AmBaSar-RGD2, respectively. The integrin αvβ3 targeting specificity was confirmed by blocking experiments. Therefore, the new tracer 64Cu-AmBaSar- RGD2 exhibited better tumor-targeting efficacy and more favorable in vivo pharmacokinetics than the 64Cu labeled RGD monomer due to the polyvalency effect.

Keywords: PET, copper-64, bifunctional chelator, RGD, integrin αvβ3, Micro-PET Imaging, Integrin Receptor Binding Assay, AmBaSar-RGD2 Conjugation, HPLC


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy