Abstract
Endophytes are microorganisms that live within host plants for at least part of their life and do not cause apparent symptoms of diseases. In general, beneficial endophytes promote host plant growth, increase plant nutrient uptake, inhibit plant pathogen growth, reduce disease severity, and enhance tolerance to environmental stresses. As sustainable and renewable agricultural production (including current biofuel and bioenergy crops) increases in prominence, endophytic microorganisms will play important roles and offer environmentally-friendly methods to increase productivity while reducing chemical inputs. This review discusses various aspects of beneficial fungal and bacterial endophyte interactions with plants, including the physiological and molecular mechansims by which they benefit plant performance. We also discuss the potential for genetic modification of endophytes with useful genes, which could be used to impart additional traits following inoculation with the genetically engineered endophytes. Finally, we review US-issued patents over the past decade which relate to the use of fungal and bacterial endophytes for plant growth and stress tolerance improvement.
Keywords: Endophytic bacteria, endophytic fungi, plant growth promotion, stress tolerance
Recent Patents on Biotechnology
Title: The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement
Volume: 4 Issue: 1
Author(s): Chuansheng Mei and Barry S. Flinn
Affiliation:
Keywords: Endophytic bacteria, endophytic fungi, plant growth promotion, stress tolerance
Abstract: Endophytes are microorganisms that live within host plants for at least part of their life and do not cause apparent symptoms of diseases. In general, beneficial endophytes promote host plant growth, increase plant nutrient uptake, inhibit plant pathogen growth, reduce disease severity, and enhance tolerance to environmental stresses. As sustainable and renewable agricultural production (including current biofuel and bioenergy crops) increases in prominence, endophytic microorganisms will play important roles and offer environmentally-friendly methods to increase productivity while reducing chemical inputs. This review discusses various aspects of beneficial fungal and bacterial endophyte interactions with plants, including the physiological and molecular mechansims by which they benefit plant performance. We also discuss the potential for genetic modification of endophytes with useful genes, which could be used to impart additional traits following inoculation with the genetically engineered endophytes. Finally, we review US-issued patents over the past decade which relate to the use of fungal and bacterial endophytes for plant growth and stress tolerance improvement.
Export Options
About this article
Cite this article as:
Mei Chuansheng and Flinn S. Barry, The Use of Beneficial Microbial Endophytes for Plant Biomass and Stress Tolerance Improvement, Recent Patents on Biotechnology 2010; 4 (1) . https://dx.doi.org/10.2174/187220810790069523
DOI https://dx.doi.org/10.2174/187220810790069523 |
Print ISSN 1872-2083 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-4012 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
An update on Anti-inflammatory Compounds: A Review
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Does Cyclic Dependent Kinase 5 Play a Significant Role in Determination of Stroke Outcome? Possible Therapeutic Implications
Central Nervous System Agents in Medicinal Chemistry Functional Poly(ε-caprolactone) Based Materials: Preparation, Self-assembly and Application in Drug Delivery
Current Topics in Medicinal Chemistry Cell Culture in Microfluidic Systems
Micro and Nanosystems Arachidonate Cascade in the Intensive Insulin Therapy for Critically Ill Patients with Sepsis: Roles of Prostaglandins on Hyperglycemia-Impaired Immunity
Letters in Drug Design & Discovery Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View
Current Cancer Drug Targets Antioxidants in Treating Pathologies Involving Oxidative Damage: An Update on Medicinal Chemistry and Biological Activity of Stobadine and Related Pyridoindoles
Current Medicinal Chemistry Threes Company: Regulation of Cell Fate by Statins
Current Drug Targets - Cardiovascular & Hematological Disorders In vitro Vasorelaxant Effect of Artemisia herba alba Asso. in Spontaneously Hypertensive Rats
Cardiovascular & Hematological Agents in Medicinal Chemistry Anticancer Metallotherapeutics in Preclinical Development
Current Medicinal Chemistry The ACE2-Ang-(1-7)-Mas Axis and Cardioprotection
Current Cardiology Reviews Further Vitamin D Analogs
Current Vascular Pharmacology Vascular Endothelial Growth Factor and Its Receptor as Drug Targets in Hematological Malignancies
Current Drug Targets Recent Advances of Hepsin-Targeted Inhibitors
Current Medicinal Chemistry Adrenomedullin in Hypertension
Current Hypertension Reviews Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment
Current Pharmaceutical Design Novel Research Strategies of Benzimidazole Derivatives: A Review
Mini-Reviews in Medicinal Chemistry Plasticity of Neuroendocrine-Immune Interactions During Ontogeny: Role of Perinatal Programming in Pathogenesis of Inflammation and Stress- Related Diseases in Adults
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Toxicities of Targeted Agents in Advanced Renal Cell Carcinoma
Current Clinical Pharmacology Phenotypic Screening for Pharmaceuticals Using Tissue Constructs
Current Pharmaceutical Biotechnology