Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

The Endocannabinoid System and Pain

Author(s): Josee Guindon and Andrea G. Hohmann

Volume 8, Issue 6, 2009

Page: [403 - 421] Pages: 19

DOI: 10.2174/187152709789824660

Price: $65

Abstract

The therapeutic potential of cannabinoids has been the topic of extensive investigation following the discovery of cannabinoid receptors and their endogenous ligands. Cannabinoid receptors and their endogenous ligands are present at supraspinal, spinal and peripheral levels. Cannabinoids suppress behavioral responses to noxious stimulation and suppress nociceptive processing through activation of cannabinoid CB1 and CB2 receptor subtypes. Endocannabinoids, the brains own cannabis-like substances, share the same molecular target as Δ9-tetrahydrocannabinol, the main psychoactive component in cannabis. Endocannabinoids serve as synaptic circuit breakers and regulate multiple physiological and pathological conditions, e.g. regulation of food intake, immunomodulation, inflammation, analgesia, cancer, addictive behavior, epilepsy and others. This review will focus on uncovering the roles of anandamide and 2-arachidonoylglycerol, the two best characterized endocannabinoids identified to date, in controlling nociceptive responding. The roles of anandamide and 2-arachidonoylglycerol, released under physiological conditions, in modulating nociceptive responding at different levels of the neuraxis will be emphasized in this review. Effects of modulation of endocannabinoid levels through inhibition of endocannabinoid hydrolysis and uptake is also compared with effects of exogenous administration of synthetic endocannabinoids in acute, inflammatory and neuropathic pain models. Finally, the therapeutic potential of the endocannabinoid signaling system is discussed in the context of identifying novel pharmacotherapies for the treatment of pain.

Keywords: Anandamide, 2-arachidonoyl glycerol, fatty acid amide hydrolase, monoacylglycerol lipase, endocannabinoid transporter, analgesia, inflammatory, neuropathic pain


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy