Abstract
Endolysosomal proteases such as cysteinyl and aspartyl cathepsins play diverse roles in inflammatory autoimmune diseases, cancers, and neurodegenerative diseases. Cysteinyl cathepsin B and aspartyl cathepsin D levels are markedly elevated in a variety of neurological disorders including Alzheimers disease (AD), a leading cause of dementia in the elderly. Studies have also shown an increased cathepsin activity in AD patients where senile plaques and neuronal loss are marked features of the disease. Senile plaques contain amyloid-beta (Aβ) peptide, which is produced by proteolytic cleavage of the amyloid precursor protein (APP) by the proteases. In this article, we present the current knowledge of cysteinyl and aspartyl cathepsins in cellular and molecular events that lead to formation of senile plaques in AD. This article also focused on the role of cathepsin inhibitors as disease-modifying treatment strategies that could halt, or even prevent, this devastating neurological disorder.
Keywords: Cathepsins, amyloid-beta (Aβ) peptide, immune responses, autophagy, neurodegeneration, apoptosis, Alzheimer's disease (AD), cathepsin inhibitors
CNS & Neurological Disorders - Drug Targets
Title: New Insights into the Roles of Endolysosomal Cathepsins in the Pathogenesis of Alzheimers Disease: Cathepsin Inhibitors as Potential Therapeutics
Volume: 7 Issue: 3
Author(s): Azizul Haque, Naren L. Banik and Swapan K. Ray
Affiliation:
Keywords: Cathepsins, amyloid-beta (Aβ) peptide, immune responses, autophagy, neurodegeneration, apoptosis, Alzheimer's disease (AD), cathepsin inhibitors
Abstract: Endolysosomal proteases such as cysteinyl and aspartyl cathepsins play diverse roles in inflammatory autoimmune diseases, cancers, and neurodegenerative diseases. Cysteinyl cathepsin B and aspartyl cathepsin D levels are markedly elevated in a variety of neurological disorders including Alzheimers disease (AD), a leading cause of dementia in the elderly. Studies have also shown an increased cathepsin activity in AD patients where senile plaques and neuronal loss are marked features of the disease. Senile plaques contain amyloid-beta (Aβ) peptide, which is produced by proteolytic cleavage of the amyloid precursor protein (APP) by the proteases. In this article, we present the current knowledge of cysteinyl and aspartyl cathepsins in cellular and molecular events that lead to formation of senile plaques in AD. This article also focused on the role of cathepsin inhibitors as disease-modifying treatment strategies that could halt, or even prevent, this devastating neurological disorder.
Export Options
About this article
Cite this article as:
Haque Azizul, Banik L. Naren and Ray K. Swapan, New Insights into the Roles of Endolysosomal Cathepsins in the Pathogenesis of Alzheimers Disease: Cathepsin Inhibitors as Potential Therapeutics, CNS & Neurological Disorders - Drug Targets 2008; 7 (3) . https://dx.doi.org/10.2174/187152708784936653
DOI https://dx.doi.org/10.2174/187152708784936653 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Medial Temporal Lobe Volumes in Amnestic Mild Cognitive Impairment and Late-life Depression: Research Synthesis
Current Psychiatry Reviews Insights on the Neuromodulatory Propensity of Selaginella (Sanjeevani) and its Potential Pharmacological Applications
CNS & Neurological Disorders - Drug Targets Endovascular Treatment of Pulmonary and Cerebral Arteriovenous Malformations in Patients Affected by Hereditary Haemorrhagic Teleangiectasia
Current Pharmaceutical Design A Randomized, Double-Blind, Placebo-Controlled, 16-Week Study of the H<sub>3</sub> Receptor Antagonist, GSK239512 as a Monotherapy in Subjects with Mild-to-Moderate Alzheimer’s Disease
Current Alzheimer Research Mean Platelet Volume: A Link Between Thrombosis and Inflammation?
Current Pharmaceutical Design Identification of Somatic Mutations in Dementia-related Genes in Cancer Patients
Current Alzheimer Research Microbial Agents, Immune Function and Atheromatosis: The Chlamydophila pneumoniae Role
Current Immunology Reviews (Discontinued) Meet Our Editorial Board Member:
Current Neuropharmacology Connection between JAK/STAT and PPARγ Signaling During the Progression of Multiple Sclerosis: Insights into the Modulation of T-Cells and Immune Responses in the Brain
Current Molecular Pharmacology Amyloid-β Aggregation Inhibitory and Neuroprotective Effects of Xanthohumol and its Derivatives for Alzheimer’s Diseases
Current Alzheimer Research Fyn Kinase in Brain Diseases and Cancer: The Search for Inhibitors
Current Medicinal Chemistry Editorial [Hot topic: Alzheimers Disease Drug Discovery: Aβ and Beyond (Guest Editors: D.W. Shineman and H.M. Fillit)]
Current Alzheimer Research The Correlations between Postmortem Brain Pathologies and Cognitive Dysfunction in Aging and Alzheimer's Disease
Current Alzheimer Research In Vitro Evidence for Competitive TSPO Binding of the Imaging Biomarker Candidates Vinpocetine and Two Iodinated DAA1106 Analogues in Post Mortem Autoradiography Experiments on Whole Hemisphere Human Brain Slices
Current Radiopharmaceuticals New Developments of Clinical Trial in Immunotherapy for Alzheimer's Disease
Current Pharmaceutical Biotechnology The Role of Aβ Peptides in Alzheimers Disease
Protein & Peptide Letters Aluminum Excytotoxicity and NeuroAutotoImmunity: The Role of the Brain Expression of CD32+ (FcγRIIa), ICAM-1+ and CD3ع in Aging
Current Aging Science Synthesis of 5-Arylidene Barbiturates: A Novel Class of DPPH Radical Scavengers
Letters in Drug Design & Discovery Is Alpha-Synuclein Pathology a Target for Treatment of Neurodegenerative Disorders?
Current Alzheimer Research A Genetic Dissection of Antipsychotic Induced Movement Disorders
Current Medicinal Chemistry