Abstract
The human genome must be tightly packaged in order to fit inside the nucleus of a cell. Genome organization is functional rather than random, which allows for the proper execution of gene expression programs and other biological processes. Recently, three-dimensional chromatin organization has emerged as an important transcriptional control mechanism. For example, enhancers were shown to regulate target genes by physically interacting with them regardless of their linear distance and even if located on different chromosomes. These chromatin contacts can be measured with the “chromosome conformation capture” (3C) technology and other 3C-related techniques. Given the recent innovation of 3C-derived approaches, it is not surprising that we still know very little about the structure of our genome at highresolution. Even less well understood is whether there exist distinct types of chromatin contacts and importantly, what regulates them. A new form of regulation involving the expression of long non-coding RNAs (lncRNAs) was recently identified. lncRNAs are a very abundant class of non-coding RNAs that are often expressed in a tissue-specific manner. Although their different subcellular localizations point to their involvement in numerous cellular processes, it is clear that lncRNAs play an important role in regulating gene expression. How they control transcription however is mostly unknown. In this review, we provide an overview of known lncRNA transcription regulation activities. We also discuss potential mechanisms by which ncRNAs might exert three-dimensional transcriptional control and what recent studies have revealed about their role in shaping our genome.
Keywords: Chromatin, epigenetics, gene regulation, non-coding RNA, polycomb repression complex, ribonucleoprotein complex, transcription, tiRNAs, HOX genes, Xist
Current Genomics
Title: Shaping the Genome with Non-Coding RNAs
Volume: 12 Issue: 5
Author(s): Xue Q.D. Wang, Jennifer L. Crutchley and Josee Dostie
Affiliation:
Keywords: Chromatin, epigenetics, gene regulation, non-coding RNA, polycomb repression complex, ribonucleoprotein complex, transcription, tiRNAs, HOX genes, Xist
Abstract: The human genome must be tightly packaged in order to fit inside the nucleus of a cell. Genome organization is functional rather than random, which allows for the proper execution of gene expression programs and other biological processes. Recently, three-dimensional chromatin organization has emerged as an important transcriptional control mechanism. For example, enhancers were shown to regulate target genes by physically interacting with them regardless of their linear distance and even if located on different chromosomes. These chromatin contacts can be measured with the “chromosome conformation capture” (3C) technology and other 3C-related techniques. Given the recent innovation of 3C-derived approaches, it is not surprising that we still know very little about the structure of our genome at highresolution. Even less well understood is whether there exist distinct types of chromatin contacts and importantly, what regulates them. A new form of regulation involving the expression of long non-coding RNAs (lncRNAs) was recently identified. lncRNAs are a very abundant class of non-coding RNAs that are often expressed in a tissue-specific manner. Although their different subcellular localizations point to their involvement in numerous cellular processes, it is clear that lncRNAs play an important role in regulating gene expression. How they control transcription however is mostly unknown. In this review, we provide an overview of known lncRNA transcription regulation activities. We also discuss potential mechanisms by which ncRNAs might exert three-dimensional transcriptional control and what recent studies have revealed about their role in shaping our genome.
Export Options
About this article
Cite this article as:
Q.D. Wang Xue, L. Crutchley Jennifer and Dostie Josee, Shaping the Genome with Non-Coding RNAs, Current Genomics 2011; 12 (5) . https://dx.doi.org/10.2174/138920211796429772
DOI https://dx.doi.org/10.2174/138920211796429772 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
In Vitro and In Vivo Investigations into the Carbene Gold Chloride and Thioglucoside Anticancer Drug Candidates NHC-AuCl and NHC-AuSR
Letters in Drug Design & Discovery P-glycoprotein Inhibition: The Past, the Present and the Future
Current Drug Metabolism Synthesis and Characterization of ROSA Dye - A Rhodamine B-type Fluorophore, Suitable for Bioconjugation and Fluorescence Studies in Live Cells
Protein & Peptide Letters Mitochondrial Lipids as Apoptosis Regulators
Current Medicinal Chemistry The Mechanism in Gastric Cancer Chemoprevention by Allicin
Anti-Cancer Agents in Medicinal Chemistry Phage Display Derived Therapeutic Antibodies
Current Pharmaceutical Biotechnology MicroRNA-542-3p Regulates P-glycoprotein Expression in Rat Epilepsy via the Toll-like Receptor 4/Nuclear Factor-kappaB Signaling Pathway
Current Neurovascular Research MicroRNA-372-3p Predicts Response of TACE Patients Treated with Doxorubicin and Enhances Chemosensitivity in Hepatocellular Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Cytotoxicity and Apoptosis Induced by a Plumbagin Derivative in Estrogen Positive MCF-7 Breast Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry Marine Natural Products and Related Compounds as Anticancer Agents: an Overview of their Clinical Status
Anti-Cancer Agents in Medicinal Chemistry Routine Collection of Patient-Reported Outcomes in an HIV Clinic Setting:The First 100 Patients
Current HIV Research Hybrid Imidazole-Pyridine Derivatives: An Approach to Novel Anticancer DNA Intercalators
Current Medicinal Chemistry Cyclophilin A as a Target of Cisplatin Chemosensitizers
Current Cancer Drug Targets From Natural Products to Designer Drugs: Development and Molecular Mechanisms Action of Novel Anti-Microtubule Breast Cancer Therapeutics
Current Topics in Medicinal Chemistry Effects of LPA and S1P on the Nervous System and Implications for Their Involvement in Disease
Current Drug Targets Drug Metabolism and Pharmacokinetics in Support of Drug Design
Current Pharmaceutical Design Potentials of Polymeric Nanoparticle as Drug Carrier for Cancer Therapy: With a Special Reference to Pharmacokinetic Parameters
Current Drug Metabolism Synthesis of 9-O-3-(1-piperazinyl/morpholinyl/piperidinyl)pentyl-berberines as Potential Antioxidant and Cytotoxic Agents
Anti-Cancer Agents in Medicinal Chemistry Molecular Sieves in Medicine
Mini-Reviews in Medicinal Chemistry Mouse Mutants of Relaxin, Insulin-Like 3 Peptide and their Receptors
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents