Abstract
Adenosine is produced primarily by the metabolism of ATP and mediates its physiological actions by interacting primarily with adenosine receptors (ARs) on the plasma membranes of different cell types in the body. Activation of these G protein-coupled receptors promotes activation of diverse cellular signaling pathways that define their tissuespecific functions. One of the major actions of adenosine is cytoprotection, mediated primarily via two ARs - A1 (A1AR) and A3 (A3AR). These ARs protect cells exposed to oxidative stress and are also regulated by oxidative stress. Stressmediated regulation of ARs involves two prominent transcription factors - activator protein-1 (AP-1) and nuclear factor (NF)-κB – that mediate the induction of genes important in cell survival. Mice that are genetically deficient in the p50 subunit of NF-κB (i.e., p50 knock-out mice) exhibit altered expression of A1AR and A2AAR and demonstrate distinct behavioral phenotypes under normal conditions or after drug challenges. These effects suggest an important role for NF-κB in dictating the level of expression of ARs in vivo, in regulating the cellular responses to stress, and in modifying behavior.
Keywords: dopaminergic neurons, Adenine nucleotides, mice,, caffeine, sleep, NF-κB, p50 knockout mice, adenosine receptor, Adenosine
Current Neuropharmacology
Title: Nuclear Factor κB and Adenosine Receptors: Biochemical and Behavioral Profiling
Volume: 9 Issue: 2
Author(s): Xiaobin Xie, Sarvesh Jajoo, Linda A. Toth, Krishna A. Jhaveri and Vickram Ramkumar
Affiliation:
Keywords: dopaminergic neurons, Adenine nucleotides, mice,, caffeine, sleep, NF-κB, p50 knockout mice, adenosine receptor, Adenosine
Abstract: Adenosine is produced primarily by the metabolism of ATP and mediates its physiological actions by interacting primarily with adenosine receptors (ARs) on the plasma membranes of different cell types in the body. Activation of these G protein-coupled receptors promotes activation of diverse cellular signaling pathways that define their tissuespecific functions. One of the major actions of adenosine is cytoprotection, mediated primarily via two ARs - A1 (A1AR) and A3 (A3AR). These ARs protect cells exposed to oxidative stress and are also regulated by oxidative stress. Stressmediated regulation of ARs involves two prominent transcription factors - activator protein-1 (AP-1) and nuclear factor (NF)-κB – that mediate the induction of genes important in cell survival. Mice that are genetically deficient in the p50 subunit of NF-κB (i.e., p50 knock-out mice) exhibit altered expression of A1AR and A2AAR and demonstrate distinct behavioral phenotypes under normal conditions or after drug challenges. These effects suggest an important role for NF-κB in dictating the level of expression of ARs in vivo, in regulating the cellular responses to stress, and in modifying behavior.
Export Options
About this article
Cite this article as:
Xie Xiaobin, Jajoo Sarvesh, A. Toth Linda, A. Jhaveri Krishna and Ramkumar Vickram, Nuclear Factor κB and Adenosine Receptors: Biochemical and Behavioral Profiling, Current Neuropharmacology 2011; 9 (2) . https://dx.doi.org/10.2174/157015911795596559
DOI https://dx.doi.org/10.2174/157015911795596559 |
Print ISSN 1570-159X |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-6190 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
- Forthcoming Thematic Issues
Related Articles
-
Inhibition of IκB Phosphorylation by a Novel IKK Inhibitor IMD-1041 Attenuates Myocardial Dysfunction After Infarction
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) ATP-Sensitive K+ Channel Openers: Old Drugs with New Clinical Benefits for the Heart
Current Vascular Pharmacology The Perils, Pitfalls and Opportunities of Using High Sensitivity Cardiac Troponin
Current Medicinal Chemistry Reactive Oxygen Species in Myocardial Reperfusion Injury: From Physiopathology to Therapeutic Approaches
Current Pharmaceutical Biotechnology Status of Cytokines in Ischemia Reperfusion Induced Heart Injury
Cardiovascular & Hematological Disorders-Drug Targets Furocoumarins from Cnidium monnieri Act as Peroxisome Proliferatoractivated R and Farnesoid X Receptor Agonists
Mini-Reviews in Organic Chemistry Hypertension in Children After Renal Transplantation
Current Hypertension Reviews IL-17A and Multiple Sclerosis: Signaling Pathways, Producing Cells and Target Cells in the Central Nervous System
Current Drug Targets Changes in Serum Nampt Levels and Its Significances in Diabetic Nephropathy Patients-The Potential Role of Nampt in T2DM with Diabetic Nephropathy
Endocrine, Metabolic & Immune Disorders - Drug Targets Biochemical, Biomedical and Metabolic Aspects of Imidazole-Containing Dipeptides with the Inherent Complexity to Neurodegenerative Diseases and Various States of Mental Well-Being: A Challenging Correction and Neurotherapeutic Pharmaceutical Biotechnology for Treating Cognitive Deficits, Depression and Intellectual Disabilities
Current Pharmaceutical Biotechnology The Possibilities and Pitfalls for Anti-Complement Therapies in Inflammatory Diseases
Current Drug Targets - Inflammation & Allergy Chronic Inflammatory Diseases and the Acute Respiratory Distress Syndrome (ARDS)
Current Pharmaceutical Design Anti-inflammatory Sulfur-Containing Agents with Additional Modes of Action
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Diabetic Retinopathy, Superoxide Damage and Antioxidants
Current Pharmaceutical Biotechnology The Importance of Lost Minerals in Heart Failure
Cardiovascular & Hematological Agents in Medicinal Chemistry Normobaric Hyperoxia Preconditioning Induces Changes in the Brain Lipidome
Current Neurovascular Research Hydrogen Sulfide and its Modulation in Arterial Hypertension and Atherosclerosis
Cardiovascular & Hematological Agents in Medicinal Chemistry Oxytosis: A Novel Form of Programmed Cell Death
Current Topics in Medicinal Chemistry The Role of Prostaglandins in Liver Ischemia-Reperfusion Injury
Current Pharmaceutical Design Energy Metabolism in the Normal and in the Diabetic Heart
Current Pharmaceutical Design