Abstract
The development of efficacious antiretroviral drugs that minimize adverse effects is a current challenge in HIV-1 therapy. Metabolic alterations reminiscent of the metabolic syndrome and overt lipodystrophy appear often in HIV-1-infected patients undergoing antiretroviral treatment. The etiopathogenesis of these alterations is complex, but lipotoxicity has recently emerged as a key concept for explaining the metabolic syndrome in HIV-1-infected patients, similarly to what has been observed in diseases such as obesity and genetic lipodystrophies. Antiretroviral drugs from distinct drug families may directly elicit such lipotoxic phenomena, via increased lipolysis, enhanced adipocyte apoptosis and impaired adipogenesis, which collectively lead to a reduced capacity of subcutaneous adipose tissue to enlarge to meet fat storage requirements. Thus, fatty acids that cannot be properly stored as triglycerides in subcutaneous adipose tissue are expected to accumulate in visceral fat as well as in organs and tissues, such as the pancreas, muscle and liver, leading to the pattern of metabolic alterations associated with abnormal ectopic fat accumulation, mainly insulin resistance. Inflammatory responses, evoked by the combined effects of antiretroviral drugs and the underlying HIV-1 infection, also contribute to lipotoxicity, reflecting the action of pro-inflammatory cytokines that enhance lipolytic activity in adipose tissue and impair adipogenesis. Minimizing the lipotoxic action of antiretroviral drugs is ultimately essential in reducing metabolic alterations in treated patients. Moreover, pharmacological strategies that reduce lipotoxicity and promote adipose tissue expandability can be expected to ameliorate the overall metabolic abnormalities in HIV-1-infected, antiretroviral-treated patients.
Keywords: Lipotoxicity, lipodystrophy, HIV, fatty acids, adipose tissue