Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Formulation Optimization of Etoposide Loaded PLGA Nanoparticles by Double Factorial Design and their Evaluation

Author(s): Khushwant S. Yadav and Krutika K. Sawant

Volume 7, Issue 1, 2010

Page: [51 - 64] Pages: 14

DOI: 10.2174/156720110790396517

Price: $65

Abstract

Etoposide is one of the most commonly used drugs in chemotherapy of acute lymphocytic leukemia and acute myelogenous leukaemia. Etoposide has variable oral bioavailability ranging from 24-74% and has terminal half life of 1.5 hours by intravenous route. The conventional parenteral therapy causes inconvenience and pain to the patients as it has to be given through a continuous IV infusion over 24-34 h. The present investigation was aimed at developing etoposide loaded biodegradable nanoparticles which would be a sustained release formulation and replace the conventional therapy of continuous intravenous administration. Nanoparticles were prepared by emulsion solvent evaporation method using high pressure homogenization. The process parameters like homogenization cycles (four) and homogenization pressure (10000 psi) were first optimized using a 32 factorial design based on response Y1(mean particle size of 98±1nm). Then a 32 factorial design was carried out to study the effect of two independent variables, ratio of drug and polymer (X1) and surfactant concentration (X2) on the two responses to obtain their optimized values, percentage entrapment efficiency (Y2, 83.12±8.3%) and mean particle size (Y3, 105±5.4 nm) for Etoposide loaded PLGA Nanoparticles. Contour plots and response surface plots showed visual representation of relationship between the experimental responses and the set of input variables. The adequacy of the regression model was verified by a check point analysis. The zeta potential values ranged between -23.0 to -34.2 mV, indicating stability. Sucrose was used as cryoprotectant during lyophilization. DSC and XRD studies indicated that etoposide was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. The electron micrographs showed spherical, discrete and homogenous particles. Drug release study showed that etoposide loaded PLGA nanoparticles sustained release up to 72h. The release from the nanoparticles followed first order kinetics and mechanism of drug release was Fickian. Stability studies indicated that it was best to store nanoparticle formulations in the freeze dried state at 2-8 C where they remained stable in terms of both size and drug content upto three months.

Keywords: Etoposide, PLGA, Nanoparticles, 32 Factorial design, Sustained release, Stability studies


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy