Abstract
We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution.
Keywords: Proteome, interactome, multiprotein assemblies, structural genomics, robotics, multigene expression, multi-Bac, BEVS, ACEMBL, complexomics
Current Genomics
Title: Getting a Grip on Complexes
Volume: 10 Issue: 8
Author(s): Yan Nie, Cristina Viola, Christoph Bieniossek, Simon Trowitzsch, Lakshmi Sumitra Vijayachandran, Maxime Chaillet, Frederic Garzoni and Imre Berger
Affiliation:
Keywords: Proteome, interactome, multiprotein assemblies, structural genomics, robotics, multigene expression, multi-Bac, BEVS, ACEMBL, complexomics
Abstract: We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution.
Export Options
About this article
Cite this article as:
Nie Yan, Viola Cristina, Bieniossek Christoph, Trowitzsch Simon, Vijayachandran Sumitra Lakshmi, Chaillet Maxime, Garzoni Frederic and Berger Imre, Getting a Grip on Complexes, Current Genomics 2009; 10 (8) . https://dx.doi.org/10.2174/138920209789503923
DOI https://dx.doi.org/10.2174/138920209789503923 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Nifedipine Inhibits the Progression of An Experimentally Induced Cerebral Aneurysm in Rats with Associated Down-Regulation of NF-Kappa B Transcriptional Activity
Current Neurovascular Research Regulatory T Cells in Cancer Biology: A Possible New Target for Biochemical Therapies
Mini-Reviews in Medicinal Chemistry Relationships Between Alcohol Consumption, Smoking Status and Food Habits in Greek Adolescents. Vascular Implications for the Future
Current Vascular Pharmacology Caregiver Involvement in Sexual Risk Reduction with Substance Using Juvenile Delinquents: Overview and Preliminary Outcomes of a Randomized Trial
Adolescent Psychiatry 3D Pharmacophore Based Virtual Screening of A2A Adenosine Receptor Antagonists
Protein & Peptide Letters ROS Effects on Neurodegeneration in Alzheimers Disease and Related Disorders: On Environmental Stresses of Ionizing Radiation
Current Alzheimer Research Drugs Used to Treat Parkinsons Disease, Present Status and Future Directions
CNS & Neurological Disorders - Drug Targets Phosphodiesterase 4 Inhibitors for the Treatment of Asthma and COPD
Current Medicinal Chemistry Patent Selections
Recent Patents on Inflammation & Allergy Drug Discovery Malaria, Antimalaria Drugs, Drug/Parasite Interactions, and the Brain: A Review of Impacts on Behaviour, Neurochemistry and Structure
Central Nervous System Agents in Medicinal Chemistry Plasticity of Neuroendocrine-Immune Interactions During Ontogeny: Role of Perinatal Programming in Pathogenesis of Inflammation and Stress- Related Diseases in Adults
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) System Level Meta-analysis of Microarray Datasets for Elucidation of Diabetes Mellitus Pathobiology
Current Genomics Managing the Suicidal Risk in Pregnant Women with Severe and Persistent Psychiatric Disorder: Focus on Antisuicidal Drugs and Somatic Interventions
Current Psychiatry Reviews Clinical Uses of Melatonin: Evaluation of Human Trials
Current Medicinal Chemistry Structure-Function Implications in Alzheimers Disease: Effect of Aβ Oligomers at Central Synapses
Current Alzheimer Research Current Rapid-Onset Antidepressants and Related Animal Models
Current Pharmaceutical Design Gender Differences in Characteristics and Outcome in Primary Intraventricular Hemorrhage
Current Neurovascular Research Predicting Protein-Ligand Binding Sites Based on an Improved Geometric Algorithm
Protein & Peptide Letters DNA Methyltransferase-1 Inhibitors as Epigenetic Therapy for Cancer
Current Cancer Drug Targets Editorial [Hot Topic: Frontiers of Metabolomics – Going from Bench to Bedside (Guest Editor: Anders Nordstrom)]
Current Pharmaceutical Biotechnology