Abstract
The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Keywords: Cell cycle, microRNA, anoxia tolerance, retinoblastoma, ischemia, chromatin remodeling, Trachemys scripta elegans
Current Genomics
Title: Perspectives in Cell Cycle Regulation: Lessons from an Anoxic Vertebrate
Volume: 10 Issue: 8
Author(s): Kyle K. Biggar and Kenneth B. Storey
Affiliation:
Keywords: Cell cycle, microRNA, anoxia tolerance, retinoblastoma, ischemia, chromatin remodeling, Trachemys scripta elegans
Abstract: The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Export Options
About this article
Cite this article as:
Biggar K. Kyle and Storey B. Kenneth, Perspectives in Cell Cycle Regulation: Lessons from an Anoxic Vertebrate, Current Genomics 2009; 10 (8) . https://dx.doi.org/10.2174/138920209789503905
DOI https://dx.doi.org/10.2174/138920209789503905 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cyclin-Dependent Kinase Inhibition by Flavoalkaloids
Mini-Reviews in Medicinal Chemistry Preventive and Therapeutic Effects of the Retinoid X Receptor Agonist Bexarotene on Tumors
Current Drug Metabolism Aptamers in Targeted Nanotherapy
Current Topics in Medicinal Chemistry NK-1 Receptor Antagonists: A New Paradigm in Pharmacological Therapy
Current Medicinal Chemistry Subject Index To Volume 3
Current Neurovascular Research Potential Role of PKC Inhibitors in the Treatment of Hematological Malignancies
Current Pharmaceutical Design Molecular Evidence of Cryptotanshinone for Treatment and Prevention of Human Cancer
Anti-Cancer Agents in Medicinal Chemistry Onconase and Amphinase, the Antitumor Ribonucleases from Rana pipiens Oocytes
Current Pharmaceutical Biotechnology Developing Histone Deacetylase Inhibitors as Anti-Cancer Therapeutics
Current Medicinal Chemistry Genome-Wide Integrated Analyses of Androgen Receptor Signaling in Prostate Cancer Based on High-Throughput Technology
Current Drug Targets HPV Cervical Infection and Immunodysregulation: Synergistic Risks for Neoplasia-Review
Current Women`s Health Reviews The Neuroendocrine System as a Model to Evaluate Experimental Gene Therapy
Current Gene Therapy Gene and Cancer Therapy - Pseudorabies Virus: A Novel Research and Therapeutic Tool?
Current Gene Therapy Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down- Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway
Inflammation & Allergy - Drug Targets (Discontinued) Integrase Interactor 1 in Health and Disease
Current Protein & Peptide Science Sphingolipid Metabolism and Leukemia: A Potential for Novel Therapeutic Approaches
Anti-Cancer Agents in Medicinal Chemistry The p53-Estrogen Receptor Loop in Cancer
Current Molecular Medicine Relations between GPR4 Expression, Microvascular Density (MVD) and Clinical Pathological Characteristics of Patients with Epithelial Ovarian Carcinoma (EOC)
Current Pharmaceutical Design MiR-492 as an Important Biomarker for Early Diagnosis and Targeted Treatment in Different Cancers
Current Cancer Therapy Reviews Tumor Stem Cell Niches: A New Functional Framework for the Action of Anticancer Drugs
Recent Patents on Anti-Cancer Drug Discovery