Abstract
Hsp70 molecular chaperones play a variety of functions in every organism, cell type and organelle, and their activities have been implicated in a number of human pathologies, ranging from cancer to neurodegenerative diseases. The functions, regulations and structure of Hsp70s were intensively studied for about three decades, yet much still remains to be learned about these essential folding enzymes. Genome sequencing efforts revealed that most genomes contain multiple members of the Hsp70 family, some of which co-exist in the same cellular compartment. For example, the human cytosol and nucleus contain six highly homologous Hsp70 proteins while the yeast Saccharomyces cerevisiae contains four canonical Hsp70s and three fungal-specific ribosome-associated and specialized Hsp70s. The reasons and significance of the requirement for multiple Hsp70s is still a subject of debate. It has been postulated for a long time that these Hsp70 isoforms are functionally redundant and differ only by their spatio-temporal expression patterns. However, several studies in yeast and higher eukaryotic organisms challenged this widely accepted idea by demonstrating functional specificity among Hsp70 isoforms. Another element of complexity is brought about by specific cofactors, such as Hsp40s or nucleotide exchange factors that modulate the activity of Hsp70s and their binding to client proteins. Hence, a dynamic network of chaperone/co-chaperone interactions has evolved in each organism to efficiently take advantage of the multiple cellular roles Hsp70s can play. We summarize here our current knowledge of the functions and regulations of these molecular chaperones, and shed light on the known functional specificities among isoforms.
Keywords: Hsp70, Ssa1, chaperone network, functional specificity
Current Genomics
Title: Multiple Hsp70 Isoforms in the Eukaryotic Cytosol: Mere Redundancy or Functional Specificity?
Volume: 9 Issue: 5
Author(s): Mehdi Kabani and Celine N. Martineau
Affiliation:
Keywords: Hsp70, Ssa1, chaperone network, functional specificity
Abstract: Hsp70 molecular chaperones play a variety of functions in every organism, cell type and organelle, and their activities have been implicated in a number of human pathologies, ranging from cancer to neurodegenerative diseases. The functions, regulations and structure of Hsp70s were intensively studied for about three decades, yet much still remains to be learned about these essential folding enzymes. Genome sequencing efforts revealed that most genomes contain multiple members of the Hsp70 family, some of which co-exist in the same cellular compartment. For example, the human cytosol and nucleus contain six highly homologous Hsp70 proteins while the yeast Saccharomyces cerevisiae contains four canonical Hsp70s and three fungal-specific ribosome-associated and specialized Hsp70s. The reasons and significance of the requirement for multiple Hsp70s is still a subject of debate. It has been postulated for a long time that these Hsp70 isoforms are functionally redundant and differ only by their spatio-temporal expression patterns. However, several studies in yeast and higher eukaryotic organisms challenged this widely accepted idea by demonstrating functional specificity among Hsp70 isoforms. Another element of complexity is brought about by specific cofactors, such as Hsp40s or nucleotide exchange factors that modulate the activity of Hsp70s and their binding to client proteins. Hence, a dynamic network of chaperone/co-chaperone interactions has evolved in each organism to efficiently take advantage of the multiple cellular roles Hsp70s can play. We summarize here our current knowledge of the functions and regulations of these molecular chaperones, and shed light on the known functional specificities among isoforms.
Export Options
About this article
Cite this article as:
Kabani Mehdi and Martineau N. Celine, Multiple Hsp70 Isoforms in the Eukaryotic Cytosol: Mere Redundancy or Functional Specificity?, Current Genomics 2008; 9 (5) . https://dx.doi.org/10.2174/138920208785133280
DOI https://dx.doi.org/10.2174/138920208785133280 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Etanercept Improves Cognitive Performance and Increases eNOS and BDNF Expression During Experimental Vascular Dementia in Streptozotocin- induced Diabetes
Current Neurovascular Research Shut-Down of Translation, a Global Neuronal Stress Response:Mechanisms and Pathological Relevance
Current Pharmaceutical Design Metformin and Energy Metabolism in Breast Cancer: From Insulin Physiology to Tumour-initiating Stem Cells
Current Molecular Medicine Heat Shock Protein 90 Inhibitors as Therapeutic Agents
Recent Patents on Anti-Cancer Drug Discovery Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective
Endocrine, Metabolic & Immune Disorders - Drug Targets Novel Therapeutic Targets for the Treatment of Depression
Current Medicinal Chemistry - Central Nervous System Agents Vasopressin in Liver Disease – Should We Turn On or Off?
Current Clinical Pharmacology Ion Exchange Resins Transforming Drug Delivery Systems
Current Drug Delivery Trends in Snakebite Envenomation Therapy: Scientific, Technological and Public Health Considerations
Current Pharmaceutical Design NADPH Oxidase and Neurodegeneration
Current Neuropharmacology Neurotransmitter Effects in Human Immunodeficiency Virus (HIV) and Simian Immuno-Deficiency Virus (SIV) Infection
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry Soy Isoflavones and Exercise: Possible Benefits for Postmenopausal Womens Cardiovascular Health
Current Women`s Health Reviews Lipid Raft Alterations in Aged-Associated Neuropathologies
Current Alzheimer Research Isoprostanes as Biomarkers and Mediators of Oxidative Injury in Infant and Adult Central Nervous System Diseases
Current Neurovascular Research Gastroretentive Drug Delivery System of Ranitidine Hydrochloride Based on Osmotic Technology: Development and Evaluation
Current Drug Delivery Gene Therapy in Plastic and Reconstructive Surgery
Current Gene Therapy Pharmacological Applications of Antioxidants: Lights and Shadows
Current Drug Targets Neuroimaging of the Serotonin Transporter: Possibilities and Pitfalls
Current Psychiatry Reviews HIF-1α Deficiency Perturbs T and B Cell Functions
Current Pharmaceutical Design Thin, Stubby or Mushroom: Spine Pathology in Alzheimers Disease
Current Alzheimer Research