Abstract
The epidermis is a model particularly well suited to the study of cell proliferation and differentiation, and of alterations of these processes such as carcinogenesis. Compartmentalization exists in this tissue, with the proliferative, less differentiated cells confined to the basal layer and the terminally differentiating, non-proliferative cells moving upwards to the surface through distinct layers. Different genes are expressed throughout this process in a stage-of-differentiationspecific manner, and their promoters have been very useful in directing precise gene expression in transgenic mice. Other attractive characteristics of the epidermis include its external localization, which facilitates manipulation and observation, the possibility of obtaining primary keratinocytes that can be easily cultured and manipulated in vitro, and the existence of well-established protocols for chemical and UV carcinogenesis. The latter are invaluable tools for assessing the in vivo functions of the genes targeted in transgenic mice. These characteristics have made the epidermis a widely used model system in recent years for the study of molecular mechanisms of carcinogenesis. A wealth of transgenic mice generated using epidermal-specific promoters, as well as knockout animals, have been used to examine the role of genes involved in processes such as cell cycle control, cell signaling, cell growth and differentiation, and angiogenesis in tumor and metastasis growth. Cre / loxP technology will allow a new generation of mice that allows the study of cancer genetics in a cell type-and time-controlled manner, more closely resembling the conditions found in the development of neoplasms.
Keywords: skin carcinogenesis, uv carcinogenesis, cre/loxp
Current Genomics
Title: Understanding Mouse Skin Carcinogenesis through Transgenic Approaches
Volume: 3 Issue: 4
Author(s): Fernando Larcher, Angel Ramirez, M. Llanos Casanova, Manuel Navarro, Jesus M. Paramio, Paloma Perez, Angustias Page, Mirentxu Santos and Jose L. Jorcano
Affiliation:
Keywords: skin carcinogenesis, uv carcinogenesis, cre/loxp
Abstract: The epidermis is a model particularly well suited to the study of cell proliferation and differentiation, and of alterations of these processes such as carcinogenesis. Compartmentalization exists in this tissue, with the proliferative, less differentiated cells confined to the basal layer and the terminally differentiating, non-proliferative cells moving upwards to the surface through distinct layers. Different genes are expressed throughout this process in a stage-of-differentiationspecific manner, and their promoters have been very useful in directing precise gene expression in transgenic mice. Other attractive characteristics of the epidermis include its external localization, which facilitates manipulation and observation, the possibility of obtaining primary keratinocytes that can be easily cultured and manipulated in vitro, and the existence of well-established protocols for chemical and UV carcinogenesis. The latter are invaluable tools for assessing the in vivo functions of the genes targeted in transgenic mice. These characteristics have made the epidermis a widely used model system in recent years for the study of molecular mechanisms of carcinogenesis. A wealth of transgenic mice generated using epidermal-specific promoters, as well as knockout animals, have been used to examine the role of genes involved in processes such as cell cycle control, cell signaling, cell growth and differentiation, and angiogenesis in tumor and metastasis growth. Cre / loxP technology will allow a new generation of mice that allows the study of cancer genetics in a cell type-and time-controlled manner, more closely resembling the conditions found in the development of neoplasms.
Export Options
About this article
Cite this article as:
Larcher Fernando, Ramirez Angel, Casanova Llanos M., Navarro Manuel, Paramio M. Jesus, Perez Paloma, Page Angustias, Santos Mirentxu and Jorcano L. Jose, Understanding Mouse Skin Carcinogenesis through Transgenic Approaches, Current Genomics 2002; 3 (4) . https://dx.doi.org/10.2174/1389202023350345
DOI https://dx.doi.org/10.2174/1389202023350345 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Electrochemical Cell-based Biosensors for Biomedical Applications
Current Topics in Medicinal Chemistry Monoamine Receptors and Signal Transduction Mechanisms in Suicide
Current Psychiatry Reviews Editorial (Thematic Issue: Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in Diseases: Molecular Targets)
Current Pharmaceutical Design Molecular Aspects of Resistance to Biological and Non-Biological Drugs and Strategies to Overcome Resistance in Colorectal Cancer
Current Medicinal Chemistry Adalimumab
Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry The Functions of Heparanase in Human Diseases
Mini-Reviews in Medicinal Chemistry Cancer Stem Cells and the Tumor Microenvironment: Soloists or Choral Singers
Current Pharmaceutical Biotechnology Potential Mechanisms for Increased HIV-1 Transmission Across the Endocervical Epithelium During C. trachomatis Infection
Current HIV Research Antioxidant Properties and Associated Mechanisms of Salicylates
Current Medicinal Chemistry CD147/EMMPRIN and CD44 are Potential Therapeutic Targets for Metastatic Prostate Cancer
Current Cancer Drug Targets Genes and Proteins Governing the Cellular Sensitivity to HSP90 Inhibitors: A Mechanistic Perspective
Current Cancer Drug Targets Notch Signaling: A Potential Therapeutic Target in Prostate Cancer
Current Cancer Drug Targets Hepatic PPARs: Their Role in Liver Physiology, Fibrosis and Treatment
Current Medicinal Chemistry The Role of microRNA in Ischemic and Hemorrhagic Stroke
Current Drug Delivery Combination of Anti-EGFR Drugs and Other Molecular Targeted Agents as Anti-Cancer Strategy
Current Cancer Therapy Reviews The High Mobility Group A1 (HMGA1) Transcriptome in Cancer and Development
Current Molecular Medicine Nuclear Receptor SHP as a Potential Therapeutic Target for Liver Cancer
Current Cancer Therapy Reviews Cytoplasmic CXCR4 High-Expression Exhibits Distinct Poor Clinicopathological Characteristics and Predicts Poor Prognosis in Triple-Negative Breast Cancer
Current Molecular Medicine Role of mTOR Signaling in Tumor Cell Motility, Invasion and Metastasis
Current Protein & Peptide Science Biologic Therapy in Immune Mediated Inflammatory Disease: Basic Science and Clinical Concepts
Current Drug Safety