Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Prospects for Anti-Neoplastic Therapies Based on Telomere Biology

Author(s): sheila A. Stewart and William C. Hahn

Volume 2, Issue 1, 2002

Page: [1 - 17] Pages: 17

DOI: 10.2174/1568009023334015

Price: $65

Abstract

The maintenance of specialized nucleoprotein structures at the ends of human chromosomes called telomeres is essential for chromosome stability, and plays a fundamental role in the regulation of cellular lifespan. Without new synthesis of telome-res, chromosome ends shorten with progressive cell division, eventually triggering either replicative senescence or apoptosis when telomere length becomes critically short. The regulation of telomerase activity in human cells plays a significant role in the development of cancer. Telomerase is tightly repressed in the vast majority of normal human somatic cells but becomes activated during cell immortalization and in cancers. Recent work has demonstrated that inhibiting or targeting telomerase shows promise as a novel anti-neoplastic strategy however, the biology of telomeres and telomerase predict that such approaches will differ in important ways from traditional cytotoxic drug therapies. Understanding telomerase biology may eventually lead to several types of clinically effective, telomerase-based therapies for neoplastic disease.

Keywords: Anti-Neoplastic Therapies, Telomere Biology, neoplastic disease, telomeres, telomerase, terahymena, htert gene, cancer, drug targets, immunolotherapy

Next »

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy