Abstract
The p53 gene is a tumour suppressor gene frequently mutated in human cancers. Its product is a transcription factor that regulates the expression of various genes involved in cell cycle arrest and in apoptosis in response to different cellular stresses. The recent discovery of two p53 gene homologs, p73 and p63, has uncovered a family of transcription factors and widened the scenario of cell cycle control and apoptosis. p73 and p63 genes encode proteins showing significant structural and functional similarity to p53, although important differences are emerging. p73 and p63 have an additional domain in their carboxyl-terminal region with marked similarity to the structure of SAM (sterile alpha motif) domains, typical of proteins involved in development. Indeed, differently from p53, p63 and p73 seem to be involved in development and differentiation. Both p73 and p63, at least when overproduced, can activate some of the p53-responsive promoters and trigger growth arrest and apoptosis, although their an swers in response to DNA damage differ from those of p53. The challenge is now to understand similarities and differences between family members especially in terms of their functions, regulation and interactions. This review summarizes the present knowledge on the structural, functional and evolutionary features of the p53 gene family and focuses on the differences among the three members of the family.
Current Genomics
Title: p53 Gene Family: Structural, Functional and Evolutionary Features
Volume: 4 Issue: 1
Author(s): D'Erchia A. M., Tullo A., Pesole G., Saccone C. and Sbisa E.
Affiliation:
Abstract: The p53 gene is a tumour suppressor gene frequently mutated in human cancers. Its product is a transcription factor that regulates the expression of various genes involved in cell cycle arrest and in apoptosis in response to different cellular stresses. The recent discovery of two p53 gene homologs, p73 and p63, has uncovered a family of transcription factors and widened the scenario of cell cycle control and apoptosis. p73 and p63 genes encode proteins showing significant structural and functional similarity to p53, although important differences are emerging. p73 and p63 have an additional domain in their carboxyl-terminal region with marked similarity to the structure of SAM (sterile alpha motif) domains, typical of proteins involved in development. Indeed, differently from p53, p63 and p73 seem to be involved in development and differentiation. Both p73 and p63, at least when overproduced, can activate some of the p53-responsive promoters and trigger growth arrest and apoptosis, although their an swers in response to DNA damage differ from those of p53. The challenge is now to understand similarities and differences between family members especially in terms of their functions, regulation and interactions. This review summarizes the present knowledge on the structural, functional and evolutionary features of the p53 gene family and focuses on the differences among the three members of the family.
Export Options
About this article
Cite this article as:
M. A. D'Erchia, A. Tullo, G. Pesole, C. Saccone and E. Sbisa, p53 Gene Family: Structural, Functional and Evolutionary Features, Current Genomics 2003; 4 (1) . https://dx.doi.org/10.2174/1389202033350173
DOI https://dx.doi.org/10.2174/1389202033350173 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Gene Therapy for Pituitary Tumors
Current Gene Therapy Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology
Current Topics in Medicinal Chemistry Safety and Efficacy of Immune Checkpoint Inhibitors in Children and Young Adults with Haematological Malignancies: Review and Future Perspectives
Cardiovascular & Hematological Agents in Medicinal Chemistry Hydroxy Cinnamic Acid Derivatives as Partial PPARγ Agonists: In silico Studies, Synthesis and Biological Characterization Against Chronic Myeloid Leukemia Cell Line (K562)
Anti-Cancer Agents in Medicinal Chemistry An Update on Natural Occurrence and Biological Activity of Chromones
Current Medicinal Chemistry Angiogenesis and Hypoxia in Glioblastoma: A Focus on Cancer Stem Cells
CNS & Neurological Disorders - Drug Targets Chidamide Inhibits Cell Proliferation via the PI3K/AKT Pathway in K562 Cells Based on Network Pharmacology and Experimental Validation
Current Pharmaceutical Design Hypocholesterolemia
Current Vascular Pharmacology The Common Mycobacterial Antigens and their Importance in the Treatment of Disease
Current Pharmaceutical Design Cyclin-Dependent Kinase Inhibitors as Anticancer Drugs
Current Drug Targets Selection of Active Antiviral Compounds Against COVID-19 Disease Targeting Coronavirus Endoribonuclease Nendou/NSP15 Via Ligandbased Virtual Screening and Molecular Docking
Letters in Drug Design & Discovery Epigenetic Regulation of ABCB1 Transporter Expression and Function
Current Pharmacogenomics and Personalized Medicine Cyclin-Dependent Kinase 4/6 (Cdk4/6) Inhibitors: Perspectives in Cancer Therapy and Imaging
Mini-Reviews in Medicinal Chemistry The mir-221/222 Cluster is a Key Player in Vascular Biology via the Fine-Tuning of Endothelial Cell Physiology
Current Vascular Pharmacology Targeting Microtubules to Inhibit Angiogenesis and Disrupt Tumour Vasculature:Implications for Cancer Treatment
Current Cancer Drug Targets Recent Advances in Hematopoietic Stem Cell-Mediated Regeneration
Recent Patents on Regenerative Medicine Myelodysplastic Syndromes: Review of Pathophysiology and Current Novel Treatment Approaches
Current Cancer Drug Targets Serum Proteomics in the Diagnosis and Treatment of Haematological Malignancies
Current Proteomics Impact of Leukemia Stem Cells Phenotype Expression on Response to Induction Therapy in Acute Myeloid Leukemia Patients
Cardiovascular & Hematological Disorders-Drug Targets Genetic Chemoprotection with Mutant O6-Alkylguanine-DNA-Alkyltransferases
Current Gene Therapy