Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Safety and Efficacy of Immune Checkpoint Inhibitors in Children and Young Adults with Haematological Malignancies: Review and Future Perspectives

Author(s): Eleni Tsotridou, Eleni Vasileiou, Elpis Mantadakis and Athanasios Tragiannidis*

Volume 20, Issue 1, 2022

Published on: 10 May, 2021

Page: [20 - 33] Pages: 14

DOI: 10.2174/1871525719666210510171132

Price: $65

Abstract

Despite the marked improvement in overall survival rates of paediatric patients with haematological malignancies that has been achieved during the last decades, there is still a pressing need for novel therapeutic approaches for the subset of patients with relapsed or refractory disease. Immune checkpoint inhibitors aim to induce potent anti-tumour immune responses by targeted blocking of inhibitory receptors and have shown promising results in preclinical models and studies on the adult population. However, paediatric malignancies present unique features, and so far, experience with these agents is limited. In the current review, we present an overview of efficacy and safety data from case reports, case series, and clinical trials employing the use of immune checkpoint inhibitors in children, adolescents, and young adults with haematological malignancies. We also discuss new possibilities involving novel targets and combination treatments and provide a summary of the currently registered clinical trials.

Keywords: Immune checkpoint inhibitors, pembrolizumab, nivolumab, haematological malignancies, children, paediatrics.

Graphical Abstract

[1]
Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; Chen, H.S.; Feuer, E.J.; Cronin, K.A. SEER Cancer Statistics Review, 1975-2016, National Cancer Institute. Bethesda, MD, 2019. Available from: https://seer.cancer.gov/csr/1975_2016/based on November 2018 SEER data submission, posted to the SEER web site, April 2019.
[2]
Hunger, S.P.; Lu, X.; Devidas, M.; Camitta, B.M.; Gaynon, P.S.; Winick, N.J.; Reaman, G.H.; Carroll, W.L. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children’s oncology group. J. Clin. Oncol., 2012, 30(14), 1663-1669.
[http://dx.doi.org/10.1200/JCO.2011.37.8018] [PMID: 22412151]
[3]
Nguyen, K.; Devidas, M.; Cheng, S-C.; La, M.; Raetz, E.A.; Carroll, W.L.; Winick, N.J.; Hunger, S.P.; Gaynon, P.S.; Loh, M.L. Children’s Oncology Group. Factors influencing survival after relapse from acute lymphoblastic leukemia: A Children’s Oncology Group study. Leukemia, 2008, 22(12), 2142-2150.
[http://dx.doi.org/10.1038/leu.2008.251] [PMID: 18818707]
[4]
Hoffman, A.E.; Schoonmade, L.J.; Kaspers, G.J.L. Pediatric relapsed acute myeloid leukemia: A systematic review. Expert Rev. Anticancer Ther., 2020, (1), 45-52.
[http://dx.doi.org/10.1080/14737140.2021.1841640] [PMID: 33111585]
[5]
Kelly, K.M. Hodgkin lymphoma in children and adolescents: Improving the therapeutic index. Blood, 2015, 126(22), 2452-2458.
[http://dx.doi.org/10.1182/blood-2015-07-641035] [PMID: 26582374]
[6]
Hijiya, N.; Schultz, K.R.; Metzler, M.; Millot, F.; Suttorp, M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood, 2016, 127(4), 392-399.
[http://dx.doi.org/10.1182/blood-2015-06-648667] [PMID: 26511135]
[7]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[8]
Dyck, L.; Mills, K.H.G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol., 2017, 47(5), 765-779.
[http://dx.doi.org/10.1002/eji.201646875] [PMID: 28393361]
[9]
Pauken, K.E.; Wherry, E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol., 2015, 36(4), 265-276.
[http://dx.doi.org/10.1016/j.it.2015.02.008] [PMID: 25797516]
[10]
Wherry, E.J. T cell exhaustion. Nat. Immunol., 2011, 12(6), 492-499.
[http://dx.doi.org/10.1038/ni.2035] [PMID: 21739672]
[11]
McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8+ T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol., 2019, 37, 457-495.
[http://dx.doi.org/10.1146/annurev-immunol-041015-055318] [PMID: 30676822]
[12]
Wherry, E.J.; Blattman, J.N.; Murali-Krishna, K.; van der Most, R.; Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol., 2003, 77(8), 4911-4927.
[http://dx.doi.org/10.1128/JVI.77.8.4911-4927.2003] [PMID: 12663797]
[13]
Blackburn, S.D.; Shin, H.; Haining, W.N.; Zou, T.; Workman, C.J.; Polley, A.; Betts, M.R.; Freeman, G.J.; Vignali, D.A.; Wherry, E.J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol., 2009, 10(1), 29-37.
[http://dx.doi.org/10.1038/ni.1679] [PMID: 19043418]
[14]
Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J-M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; Moskowitz, C.H. Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J. Clin. Oncol., 2016, 34(31), 3733-3739.
[http://dx.doi.org/10.1200/JCO.2016.67.3467] [PMID: 27354476]
[15]
Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; Tomita, A.; von Tresckow, B.; Shipp, M.A.; Zhang, Y.; Ricart, A.D.; Balakumaran, A.; Moskowitz, C.H. KEYNOTE-087. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic hodgkin lymphoma. J. Clin. Oncol., 2017, 35(19), 2125-2132.
[http://dx.doi.org/10.1200/JCO.2016.72.1316] [PMID: 28441111]
[16]
Armand, P.; Engert, A.; Younes, A.; Fanale, M.; Santoro, A.; Zinzani, P.L.; Timmerman, J.M.; Collins, G.P.; Ramchandren, R.; Cohen, J.B.; De Boer, J.P.; Kuruvilla, J.; Savage, K.J.; Trneny, M.; Shipp, M.A.; Kato, K.; Sumbul, A.; Farsaci, B.; Ansell, S.M. Nivolumab for relapsed/refractory classic hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: Extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J. Clin. Oncol., 2018, 36(14), 1428-1439.
[http://dx.doi.org/10.1200/JCO.2017.76.0793] [PMID: 29584546]
[17]
Maruyama, D.; Hatake, K.; Kinoshita, T.; Fukuhara, N.; Choi, I.; Taniwaki, M.; Ando, K.; Terui, Y.; Higuchi, Y.; Onishi, Y.; Abe, Y.; Kobayashi, T.; Shirasugi, Y.; Tobinai, K. Multicenter phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. Cancer Sci., 2017, 108(5), 1007-1012.
[http://dx.doi.org/10.1111/cas.13230] [PMID: 28267244]
[18]
Herrera, A.F.; Moskowitz, A.J.; Bartlett, N.L.; Vose, J.M.; Ramchandren, R.; Feldman, T.A.; LaCasce, A.S.; Ansell, S.M.; Moskowitz, C.H.; Fenton, K.; Ogden, C.A.; Taft, D.; Zhang, Q.; Kato, K.; Campbell, M.; Advani, R.H. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood, 2018, 131(11), 1183-1194.
[http://dx.doi.org/10.1182/blood-2017-10-811224] [PMID: 29229594]
[19]
Diefenbach, C.S.; Hong, F.; Ambinder, R.F.; Cohen, J.B.; Robertson, M.J.; David, K.A.; Advani, R.H.; Fenske, T.S.; Barta, S.K.; Palmisiano, N.D.; Svoboda, J.; Morgan, D.S.; Karmali, R.; Sharon, E.; Streicher, H.; Kahl, B.S.; Ansell, S.M. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: Phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol., 2020, 7(9), e660-e670.
[http://dx.doi.org/10.1016/S2352-3026(20)30221-0] [PMID: 32853585]
[20]
Ramchandren, R.; Domingo-Domènech, E.; Rueda, A.; Trněný, M.; Feldman, T.A.; Lee, H.J.; Provencio, M.; Sillaber, C.; Cohen, J.B.; Savage, K.J.; Willenbacher, W.; Ligon, A.H.; Ouyang, J.; Redd, R.; Rodig, S.J.; Shipp, M.A.; Sacchi, M.; Sumbul, A.; Armand, P.; Ansell, S.M. Nivolumab for newly diagnosed advanced-stage classic hodgkin lymphoma: Safety and efficacy in the phase II checkmate 205 study. J. Clin. Oncol., 2019, 37(23), 1997-2007.
[http://dx.doi.org/10.1200/JCO.19.00315] [PMID: 31112476]
[21]
Cheson, B.D.; Bartlett, N.L.; LaPlant, B.; Lee, H.J.; Advani, R.J.; Christian, B.; Diefenbach, C.S.; Feldman, T.A.; Ansell, S.M. Brentuximab vedotin plus nivolumab as first-line therapy in older or chemotherapy-ineligible patients with Hodgkin lymphoma (ACCRU): A multicentre, single-arm, phase 2 trial. Lancet Haematol., 2020, 7(11), e808-e815.
[http://dx.doi.org/10.1016/S2352-3026(20)30275-1] [PMID: 33010817]
[22]
Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; Dhodapkar, M.; Avigan, D.; Chapuy, B.; Ligon, A.H.; Freeman, G.J.; Rodig, S.J.; Cattry, D.; Zhu, L.; Grosso, J.F.; Bradley Garelik, M.B.; Shipp, M.A.; Borrello, I.; Timmerman, J. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J. Clin. Oncol., 2016, 34(23), 2698-2704.
[http://dx.doi.org/10.1200/JCO.2015.65.9789] [PMID: 27269947]
[23]
Ravandi, F.; Assi, R.; Daver, N.; Benton, C.B.; Kadia, T.; Thompson, P.A.; Borthakur, G.; Alvarado, Y.; Jabbour, E.J.; Konopleva, M.; Takahashi, K.; Kornblau, S.; DiNardo, C.D.; Estrov, Z.; Flores, W.; Basu, S.; Allison, J.; Sharma, P.; Pierce, S.; Pike, A.; Cortes, J.E.; Garcia-Manero, G.; Kantarjian, H.M. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: A single-arm, phase 2 study. Lancet Haematol., 2019, 6(9), e480-e488.
[http://dx.doi.org/10.1016/S2352-3026(19)30114-0] [PMID: 31400961]
[24]
Zinzani, P.L.; Santoro, A.; Gritti, G.; Brice, P.; Barr, P.M.; Kuruvilla, J.; Cunningham, D.; Kline, J.; Johnson, N.A.; Mehta-Shah, N.; Manley, T.; Francis, S.; Sharma, M.; Moskowitz, A.J. Nivolumab combined with brentuximab vedotin for relapsed/refractory primary mediastinal large B-Cell lymphoma: Efficacy and safety from the phase II checkmate 436 study. J. Clin. Oncol., 2019, 37(33), 3081-3089.
[http://dx.doi.org/10.1200/JCO.19.01492] [PMID: 31398081]
[25]
Younes, A; Brody, J; Carpio, C; Lopez-Guillermo, A; Ben-Yehuda, D; Ferhanoglu, B Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: A phase 1/2a study. Lancet Haematol, 2019, 6(2), e67-e78.
[http://dx.doi.org/10.1016/S2352-3026(18)30217-5]
[26]
Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; Tomita, A.; von Tresckow, B.; Shipp, M.A.; Lin, J.; Kim, E.; Nahar, A.; Balakumaran, A.; Moskowitz, C.H. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood, 2019, 134(14), 1144-1153.
[http://dx.doi.org/10.1182/blood.2019000324] [PMID: 31409671]
[27]
Khouri, I.F.; Fernandez Curbelo, I.; Turturro, F.; Jabbour, E.J.; Milton, D.R.; Bassett, R.L.J., Jr; Vence, L.M.; Allison, J.P.; Gulbis, A.M.; Sharma, P. Ipilimumab plus lenalidomide after allogeneic and autologous stem cell transplantation for patients with lymphoid malignancies. Clin. Cancer Res., 2018, 24(5), 1011-1018.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2777] [PMID: 29246938]
[28]
Tuscano, J.M.; Maverakis, E.; Groshen, S.; Tsao-Wei, D.; Luxardi, G.; Merleev, A.A.; Beaven, A.; DiPersio, J.F.; Popplewell, L.; Chen, R.; Kirschbaum, M.; Schroeder, M.A.; Newman, E.M. A phase I study of the combination of rituximab and ipilimumab in patients with relapsed/refractory B-cell lymphoma. Clin. Cancer Res., 2019, 25(23), 7004-7013.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0438] [PMID: 31481504]
[29]
Armand, P.; Chen, Y-B.; Redd, R.A.; Joyce, R.M.; Bsat, J.; Jeter, E.; Merryman, R.W.; Coleman, K.C.; Dahi, P.B.; Nieto, Y.; LaCasce, A.S.; Fisher, D.C.; Ng, S.Y.; Odejide, O.O.; Freedman, A.S.; Kim, A.I.; Crombie, J.L.; Jacobson, C.A.; Jacobsen, E.D.; Wong, J.L.; Patel, S.S.; Ritz, J.; Rodig, S.J.; Shipp, M.A.; Herrera, A.F. PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation. Blood, 2019, 134(1), 22-29.
[http://dx.doi.org/10.1182/blood.2019000215] [PMID: 30952672]
[30]
Zinzani, P.L.; Ribrag, V.; Moskowitz, C.H.; Michot, J-M.; Kuruvilla, J.; Balakumaran, A.; Zhang, Y.; Chlosta, S.; Shipp, M.A.; Armand, P. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood, 2017, 130(3), 267-270.
[http://dx.doi.org/10.1182/blood-2016-12-758383] [PMID: 28490569]
[31]
Armand, P.; Rodig, S.; Melnichenko, V.; Thieblemont, C.; Bouabdallah, K.; Tumyan, G.; Özcan, M.; Portino, S.; Fogliatto, L.; Caballero, M.D.; Walewski, J.; Gulbas, Z.; Ribrag, V.; Christian, B.; Perini, G.F.; Salles, G.; Svoboda, J.; Zain, J.; Patel, S.; Chen, P.H.; Ligon, A.H.; Ouyang, J.; Neuberg, D.; Redd, R.; Chatterjee, A.; Balakumaran, A.; Orlowski, R.; Shipp, M.; Zinzani, P.L. Pembrolizumab in relapsed or refractory primary mediastinal large B-cell lymphoma. J. Clin. Oncol., 2019, 37(34), 3291-3299.
[http://dx.doi.org/10.1200/JCO.19.01389] [PMID: 31609651]
[32]
Ding, W.; LaPlant, B.R.; Call, T.G.; Parikh, S.A.; Leis, J.F.; He, R.; Shanafelt, T.D.; Sinha, S.; Le-Rademacher, J.; Feldman, A.L.; Habermann, T.M.; Witzig, T.E.; Wiseman, G.A.; Lin, Y.; Asmus, E.; Nowakowski, G.S.; Conte, M.J.; Bowen, D.A.; Aitken, C.N.; Van Dyke, D.L.; Greipp, P.T.; Liu, X.; Wu, X.; Zhang, H.; Secreto, C.R.; Tian, S.; Braggio, E.; Wellik, L.E.; Micallef, I.; Viswanatha, D.S.; Yan, H.; Chanan-Khan, A.A.; Kay, N.E.; Dong, H.; Ansell, S.M. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood, 2017, 129(26), 3419-3427.
[http://dx.doi.org/10.1182/blood-2017-02-765685] [PMID: 28424162]
[33]
Barta, S.K.; Zain, J.; MacFarlane, A.W., IV; Smith, S.M.; Ruan, J.; Fung, H.C.; Tan, C.R.; Yang, Y.; Alpaugh, R.K.; Dulaimi, E.; Ross, E.A.; Campbell, K.S.; Khan, N.; Siddharta, R.; Fowler, N.H.; Fisher, R.I.; Oki, Y. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin. Lymphoma Myeloma Leuk., 2019, 19(6), 356-364.e3.
[http://dx.doi.org/10.1016/j.clml.2019.03.022] [PMID: 31029646]
[34]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; Rodig, S.J.; Chapuy, B.; Ligon, A.H.; Zhu, L.; Grosso, J.F.; Kim, S.Y.; Timmerman, J.M.; Shipp, M.A.; Armand, P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[http://dx.doi.org/10.1056/NEJMoa1411087] [PMID: 25482239]
[35]
Younes, A; Santoro, A; Zinzani, PL; Timmerman, J; Ansell, SM; Armand, P Checkmate 205: Nivolumab (nivo) in classical Hodgkin lymphoma (cHL) after autologous stem cell transplant (ASCT) and brentuximab vedotin (BV)-A phase 2 study. J Clin Oncol, 2016, 34(15)((Suppl)), 7535.
[36]
"Adolescent health" Who.int, 2020. Available from: https://www.who.int/southeastasia/health-topics/adolescent-healthAccessed: 27- Nov- 2020
[37]
Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1: PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol., 2016, 7, 550.
[http://dx.doi.org/10.3389/fimmu.2016.00550] [PMID: 28018338]
[38]
Boussiotis, V.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N. Engl. J. Med., 2016, 375(18), 1767-1778.
[http://dx.doi.org/10.1056/NEJMra1514296] [PMID: 27806234]
[39]
Wu, X.; Gu, Z.; Chen, Y.; Chen, B.; Chen, W.; Weng, L.; Liu, X. Application of PD-1 blockade in cancer immunotherapy. Comput. Struct. Biotechnol. J., 2019, 17, 661-674.
[http://dx.doi.org/10.1016/j.csbj.2019.03.006] [PMID: 31205619]
[40]
Chikuma, S. CTLA-4, an essential immune-checkpoint for T- cell activation. Curr. Top. Microbiol. Immunol., 2017, 410, 99-126.
[http://dx.doi.org/10.1007/82_2017_61] [PMID: 28900679]
[41]
Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood, 2018, 131(1), 58-67.
[http://dx.doi.org/10.1182/blood-2017-06-741033] [PMID: 29118008]
[42]
Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer, 2019, 18(1), 155.
[http://dx.doi.org/10.1186/s12943-019-1091-2] [PMID: 31690319]
[43]
Rotte, A.; Jin, J.Y.; Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol., 2018, 29(1), 71-83.
[http://dx.doi.org/10.1093/annonc/mdx686] [PMID: 29069302]
[44]
Gorman, J.V.; Colgan, J.D. Regulation of T cell responses by the receptor molecule Tim-3. Immunol. Res., 2014, 59(1-3), 56-65.
[http://dx.doi.org/10.1007/s12026-014-8524-1] [PMID: 24825777]
[45]
Das, M.; Zhu, C.; Kuchroo, V.K. Tim-3 and its role in regulating anti-tumor immunity. Immunol. Rev., 2017, 276(1), 97-111.
[http://dx.doi.org/10.1111/imr.12520] [PMID: 28258697]
[46]
Du, W.; Yang, M.; Turner, A.; Xu, C.; Ferris, R.L.; Huang, J.; Kane, L.P.; Lu, B. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int. J. Mol. Sci., 2017, 18(3), 645.
[http://dx.doi.org/10.3390/ijms18030645] [PMID: 28300768]
[47]
Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol., 2005, 6(12), 1245-1252.
[http://dx.doi.org/10.1038/ni1271] [PMID: 16286920]
[48]
Chiba, S.; Baghdadi, M.; Akiba, H.; Yoshiyama, H.; Kinoshita, I.; Dosaka-Akita, H.; Fujioka, Y.; Ohba, Y.; Gorman, J.V.; Colgan, J.D.; Hirashima, M.; Uede, T.; Takaoka, A.; Yagita, H.; Jinushi, M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol., 2012, 13(9), 832-842.
[http://dx.doi.org/10.1038/ni.2376] [PMID: 22842346]
[49]
Huang, Y-H.; Zhu, C.; Kondo, Y.; Anderson, A.C.; Gandhi, A.; Russell, A.; Dougan, S.K.; Petersen, B.S.; Melum, E.; Pertel, T.; Clayton, K.L.; Raab, M.; Chen, Q.; Beauchemin, N.; Yazaki, P.J.; Pyzik, M.; Ostrowski, M.A.; Glickman, J.N.; Rudd, C.E.; Ploegh, H.L.; Franke, A.; Petsko, G.A.; Kuchroo, V.K.; Blumberg, R.S. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature, 2015, 517(7534), 386-390.
[http://dx.doi.org/10.1038/nature13848] [PMID: 25363763]
[50]
Nakayama, M.; Akiba, H.; Takeda, K.; Kojima, Y.; Hashiguchi, M.; Azuma, M.; Yagita, H.; Okumura, K. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood, 2009, 113(16), 3821-3830.
[http://dx.doi.org/10.1182/blood-2008-10-185884] [PMID: 19224762]
[51]
Solomon, B.L.; Garrido-Laguna, I. TIGIT: A novel immunotherapy target moving from bench to bedside. Cancer Immunol. Immunother., 2018, 67(11), 1659-1667.
[http://dx.doi.org/10.1007/s00262-018-2246-5] [PMID: 30232519]
[52]
Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; Eaton, D.L.; Grogan, J.L. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell, 2014, 26(6), 923-937.
[http://dx.doi.org/10.1016/j.ccell.2014.10.018] [PMID: 25465800]
[53]
Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; Eaton, D.; Grogan, J.L. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol., 2009, 10(1), 48-57.
[http://dx.doi.org/10.1038/ni.1674] [PMID: 19011627]
[54]
Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; Kutok, J.L.; Shipp, M.A. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood, 2010, 116(17), 3268-3277.
[http://dx.doi.org/10.1182/blood-2010-05-282780] [PMID: 20628145]
[55]
Roemer, M.G.M.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; Redd, R.A.; Homer, H.; Connelly, C.F.; Sun, H.H.; Daadi, S.E.; Freeman, G.J.; Armand, P.; Chapuy, B.; de Jong, D.; Hoppe, R.T.; Neuberg, D.S.; Rodig, S.J.; Shipp, M.A. PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J. Clin. Oncol., 2016, 34(23), 2690-2697.
[http://dx.doi.org/10.1200/JCO.2016.66.4482] [PMID: 27069084]
[56]
Green, M.R.; Rodig, S.; Juszczynski, P.; Ouyang, J.; Sinha, P.; O’Donnell, E.; Neuberg, D.; Shipp, M.A. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin. Cancer Res., 2012, 18(6), 1611-1618.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1942] [PMID: 22271878]
[57]
Dilly-Feldis, M.; Aladjidi, N.; Refait, J.K.; Parrens, M.; Ducassou, S.; Rullier, A. Expression of PD-1/PD-L1 in children’s classical Hodgkin lymphomas. Pediatr. Blood Cancer, 2019, 66(5), e27571.
[http://dx.doi.org/10.1002/pbc.27571] [PMID: 30637917]
[58]
Song, T.L.; Nairismägi, M-L.; Laurensia, Y.; Lim, J-Q.; Tan, J.; Li, Z-M.; Pang, W.L.; Kizhakeyil, A.; Wijaya, G.C.; Huang, D.C.; Nagarajan, S.; Chia, B.K.; Cheah, D.; Liu, Y.H.; Zhang, F.; Rao, H.L.; Tang, T.; Wong, E.K.; Bei, J.X.; Iqbal, J.; Grigoropoulos, N.F.; Ng, S.B.; Chng, W.J.; Teh, B.T.; Tan, S.Y.; Verma, N.K.; Fan, H.; Lim, S.T.; Ong, C.K. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood, 2018, 132(11), 1146-1158.
[http://dx.doi.org/10.1182/blood-2018-01-829424] [PMID: 30054295]
[59]
Marzec, M.; Zhang, Q.; Goradia, A.; Raghunath, P.N.; Liu, X.; Paessler, M.; Wang, H.Y.; Wysocka, M.; Cheng, M.; Ruggeri, B.A.; Wasik, M.A. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20852-20857.
[http://dx.doi.org/10.1073/pnas.0810958105] [PMID: 19088198]
[60]
Kang, S.H.; Hwang, H.J.; Yoo, J.W.; Kim, H.; Choi, E.S.; Hwang, S-H.; Cho, Y.U.; Jang, S.; Park, C.J.; Im, H.J.; Seo, J.J.; Kim, N.; Koh, K.N. Expression of immune checkpoint receptors on t- cells and their ligands on leukemia blasts in childhood acute leukemia. Anticancer Res., 2019, 39(10), 5531-5539.
[http://dx.doi.org/10.21873/anticanres.13746] [PMID: 31570447]
[61]
Samoa, R.A.; Lee, H.S.; Kil, S.H.; Roep, B.O. Anti-PD-1 therapy-associated type 1 diabetes in a pediatric patient with relapsed classical hodgkin lymphoma. Diabetes Care, 2020, 43(9), 2293-2295.
[http://dx.doi.org/10.2337/dc20-0740] [PMID: 32616607]
[62]
Melani, C.; Major, A.; Schowinsky, J.; Roschewski, M.; Pittaluga, S.; Jaffe, E.S.; Pack, S.D.; Abdullaev, Z.; Ahlman, M.A.; Kwak, J.J.; Morgan, R.; Rabinovitch, R.; Pan, Z.; Haverkos, B.M.; Gutman, J.A.; Pollyea, D.A.; Smith, C.A.; Wilson, W.H.; Kamdar, M. PD-1 blockade in mediastinal gray-zone lymphoma. N. Engl. J. Med., 2017, 377(1), 89-91.
[http://dx.doi.org/10.1056/NEJMc1704767] [PMID: 28679093]
[63]
Hebart, H.; Lang, P.; Woessmann, W. Nivolumab for refractory anaplastic large cell lymphoma: A case report. Ann. Intern. Med., 2016, 165(8), 607-608.
[http://dx.doi.org/10.7326/L16-0037] [PMID: 27750310]
[64]
Rigaud, C.; Abbou, S.; Minard-Colin, V.; Geoerger, B.; Scoazec, J.Y.; Vassal, G.; Jaff, N.; Heuberger, L.; Valteau-Couanet, D.; Brugieres, L. Efficacy of nivolumab in a patient with systemic refractory ALK+ anaplastic large cell lymphoma. Pediatr. Blood Cancer, 2018, 65(4)
[http://dx.doi.org/10.1002/pbc.26902] [PMID: 29193772]
[65]
Kassa, C.; Reményi, P.; Sinkó, J.; Kállay, K.; Kertész, G.; Kriván, G. Successful nivolumab therapy in an allogeneic stem cell transplant child with post-transplant lymphoproliferative disorder. Pediatr. Transplant., 2018, 22(8), e13302.
[http://dx.doi.org/10.1111/petr.13302] [PMID: 30345623]
[66]
Broglie, L.; Gershan, J.; Burke, M.J. Checkpoint inhibition of PD-L1 and CTLA-4 in a child with refractory acute leukemia. Int. J. Hematol. Oncol., 2019, 8(1), IJH10.
[http://dx.doi.org/10.2217/ijh-2018-0009] [PMID: 30863527]
[67]
Kim, Y.E.; Kim, H.; Shin, J.; Min, S.Y.; Kang, S.H.; Suh, J.K.; Koh, K.N.; Im, H.J. Stage IV natural killer/T-cell lymphoma with chronic active Epstein-Barr virus, treated with pembrolizumab and TCRαβ-depleted haploidentical hematopoietic stem cell transplantation. Leuk. Lymphoma, 2020, 61(9), 2250-2253.
[http://dx.doi.org/10.1080/10428194.2020.1757666] [PMID: 32352338]
[68]
Feucht, J.; Kayser, S.; Gorodezki, D.; Hamieh, M.; Döring, M.; Blaeschke, F.; Schlegel, P.; Bösmüller, H.; Quintanilla-Fend, L.; Ebinger, M.; Lang, P.; Handgretinger, R.; Feuchtinger, T. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget, 2016, 7(47), 76902-76919.
[http://dx.doi.org/10.18632/oncotarget.12357] [PMID: 27708227]
[69]
Boekstegers, A-M.; Blaeschke, F.; Schmid, I.; Wiebking, V.; Immler, S.; Hoffmann, F.; Bochmann, K.; Müller, S.; Grünewald, T.G.P.; Feucht, J.; Feuchtinger, T. MRD response in a refractory paediatric T-ALL patient through anti-programmed cell death 1 (PD-1) Ab treatment associated with induction of fatal GvHD. Bone Marrow Transplant., 2017, 52(8), 1221-1224.
[http://dx.doi.org/10.1038/bmt.2017.107] [PMID: 28581460]
[70]
Shad, A.T.; Huo, J.S.; Darcy, C.; Abu-Ghosh, A.; Esposito, G.; Holuba, M-J.; Robey, N.; Cooke, K.R.; Symons, H.J.; Chen, A.R.; Llosa, N.J. Tolerance and effectiveness of nivolumab after pediatric T-cell replete, haploidentical, bone marrow transplantation: A case report. Pediatr. Blood Cancer, 2017, 64(3), e26257.
[http://dx.doi.org/10.1002/pbc.26257] [PMID: 27650634]
[71]
Angenendt, L.; Schliemann, C.; Lutz, M.; Rebber, E.; Schulze, A.B.; Weckesser, M.; Stegger, L.; Schäfers, M.; Groth, C.; Kessler, T.; Lenz, G.; Stelljes, M.; Berdel, W.E. Nivolumab in a patient with refractory Hodgkin’s lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant., 2016, 51(3), 443-445.
[http://dx.doi.org/10.1038/bmt.2015.266] [PMID: 26551782]
[72]
Foran, A.E.; Nadel, H.R.; Lee, A.F.; Savage, K.J.; Deyell, R.J. Nivolumab in the treatment of refractory pediatric hodgkin lymphoma. J. Pediatr. Hematol. Oncol., 2017, 39(5), e263-e266.
[http://dx.doi.org/10.1097/MPH.0000000000000703] [PMID: 27841828]
[73]
Tchapyjnikov, D.; Borst, A.J. Immune-related neurological symptoms in an adolescent patient receiving the checkpoint inhibitor nivolumab. J. Immunother., 2017, 40(7), 286-288.
[http://dx.doi.org/10.1097/CJI.0000000000000177] [PMID: 28604555]
[74]
Dada, R.; Zabani, Y. Nivolumab induces impressive responses in relapsed/refractory classic Hodgkin lymphoma: Single institutional experience. J. Oncol. Pharm. Pract., 2019, 25(7), 1586-1589.
[http://dx.doi.org/10.1177/1078155218800150] [PMID: 30253728]
[75]
Geoerger, B.; Kang, H.J.; Yalon-Oren, M.; Marshall, L.V.; Vezina, C.; Pappo, A.; Laetsch, T.W.; Petrilli, A.S.; Ebinger, M.; Toporski, J.; Glade-Bender, J.; Nicholls, W.; Fox, E.; DuBois, S.G.; Macy, M.E.; Cohn, S.L.; Pathiraja, K.; Diede, S.J.; Ebbinghaus, S.; Pinto, N. Pembrolizumab in paediatric patients with advanced melanoma or a PD-L1-positive, advanced, relapsed, or refractory solid tumour or lymphoma (KEYNOTE-051): Interim analysis of an open-label, single-arm, phase 1-2 trial. Lancet Oncol., 2020, 21(1), 121-133.
[http://dx.doi.org/10.1016/S1470-2045(19)30671-0] [PMID: 31812554]
[76]
Davis, K.L.; Fox, E.; Merchant, M.S.; Reid, J.M.; Kudgus, R.A.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; Mackall, C.L. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol., 2020, 21(4), 541-550.
[http://dx.doi.org/10.1016/S1470-2045(20)30023-1] [PMID: 32192573]
[77]
Geoerger, B.; Zwaan, C.M.; Marshall, L.V.; Michon, J.; Bourdeaut, F.; Casanova, M.; Corradini, N.; Rossato, G.; Farid-Kapadia, M.; Shemesh, C.S.; Hutchinson, K.E.; Donaldson, F.; Liao, M.; Caron, H.; Trippett, T. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): A multicentre phase 1-2 study. Lancet Oncol., 2020, 21(1), 134-144.
[http://dx.doi.org/10.1016/S1470-2045(19)30693-X] [PMID: 31780255]
[78]
Harker-Murray, P.; Leblanc, T.; Mascarin, M.; Mauz-Körholz, C.; Michel, G.; Cooper, S. Response-adapted therapy with nivolumab and brentuximab vedotin (BV), followed by bv and bendamustine for suboptimal response, in children, adolescents, and young adults with standard-risk relapsed/refractory classical hodgkin lymphoma. Blood, 2018, 132, 927.
[http://dx.doi.org/10.1182/blood-2018-99-111279]
[79]
Accessdata.fda.gov 2020. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514s040lbl.pdf Accessed: 27- Nov- 2020
[80]
Accessdata.fda.gov 2020. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125554s070lbl.pdf Accessed: 27- Nov- 2020
[81]
Yi, M.; Jiao, D.; Xu, H.; Liu, Q.; Zhao, W.; Han, X.; Wu, K. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer, 2018, 17(1), 129.
[http://dx.doi.org/10.1186/s12943-018-0864-3] [PMID: 30139382]
[82]
Park, J.A.; Cheung, N.V. Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat. Rev., 2017, 58, 22-33.
[http://dx.doi.org/10.1016/j.ctrv.2017.05.006] [PMID: 28622628]
[83]
Barros, M.H.M.; Segges, P.; Vera-Lozada, G.; Hassan, R.; Niedobitek, G. Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival. PLoS One, 2015, 10(5), e0124531.
[http://dx.doi.org/10.1371/journal.pone.0124531] [PMID: 25978381]
[84]
Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol., 2014, 5, 520.
[http://dx.doi.org/10.3389/fimmu.2014.00520] [PMID: 25368619]
[85]
Kim, SJ; Lim, JQ; Laurensia, Y; Cho, J; Yoon, SE; Lee, JY Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: An open-label phase 2 study. Blood, 2020, 136(24), 2754-2763.
[http://dx.doi.org/10.1182/blood.2020007247] [PMID: 32766875]
[86]
Herrera, A.F.; Goy, A.; Mehta, A.; Ramchandren, R.; Pagel, J.M.; Svoboda, J.; Guan, S.; Hill, J.S.; Kwei, K.; Liu, E.A.; Phillips, T. Safety and activity of ibrutinib in combination with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B-cell lymphoma. Am. J. Hematol., 2020, 95(1), 18-27.
[http://dx.doi.org/10.1002/ajh.25659] [PMID: 31621094]
[87]
Simone, R.; Tenca, C.; Fais, F.; Luciani, M.; De Rossi, G.; Pesce, G.; Bagnasco, M.; Saverino, D. A soluble form of CTLA-4 is present in paediatric patients with acute lymphoblastic leukaemia and correlates with CD1d+ expression. PLoS One, 2012, 7(9), e44654.
[http://dx.doi.org/10.1371/journal.pone.0044654] [PMID: 23049754]
[88]
Vera-Lozada, G.; Barros, M.H.M.; Alves, P.; Segges, P.; Land, M.G.P.; Hassan, R. EOMES/TBET and soluble CTLA4/full length CTLA4 expression ratios impact on the therapeutic response in patients with classical Hodgkin lymphoma. Br. J. Haematol., 2019, 184(6), 1061-1064.
[http://dx.doi.org/10.1111/bjh.15253] [PMID: 29741770]
[89]
O’Mahony, D.; Morris, J.C.; Quinn, C.; Gao, W.; Wilson, W.H.; Gause, B.; Pittaluga, S.; Neelapu, S.; Brown, M.; Fleisher, T.A.; Gulley, J.L.; Schlom, J.; Nussenblatt, R.; Albert, P.; Davis, T.A.; Lowy, I.; Petrus, M.; Waldmann, T.A.; Janik, J.E. A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin. Cancer Res., 2007, 13(3), 958-964.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1974] [PMID: 17289891]
[90]
Bashey, A.; Medina, B.; Corringham, S.; Pasek, M.; Carrier, E.; Vrooman, L.; Lowy, I.; Solomon, S.R.; Morris, L.E.; Holland, H.K.; Mason, J.R.; Alyea, E.P.; Soiffer, R.J.; Ball, E.D. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood, 2009, 113(7), 1581-1588.
[http://dx.doi.org/10.1182/blood-2008-07-168468] [PMID: 18974373]
[91]
Davids, M.S.; Kim, H.T.; Bachireddy, P.; Costello, C.; Liguori, R.; Savell, A.; Lukez, A.P.; Avigan, D.; Chen, Y.B.; McSweeney, P.; LeBoeuf, N.R.; Rooney, M.S.; Bowden, M.; Zhou, C.W.; Granter, S.R.; Hornick, J.L.; Rodig, S.J.; Hirakawa, M.; Severgnini, M.; Hodi, F.S.; Wu, C.J.; Ho, V.T.; Cutler, C.; Koreth, J.; Alyea, E.P.; Antin, J.H.; Armand, P.; Streicher, H.; Ball, E.D.; Ritz, J.; Bashey, A.; Soiffer, R.J. Leukemia and lymphoma society blood cancer research partnership. Ipilimumab for patients with relapse after allogeneic transplantation. N. Engl. J. Med., 2016, 375(2), 143-153.
[http://dx.doi.org/10.1056/NEJMoa1601202] [PMID: 27410923]
[92]
Ansell, S.M.; Hurvitz, S.A.; Koenig, P.A.; LaPlant, B.R.; Kabat, B.F.; Fernando, D.; Habermann, T.M.; Inwards, D.J.; Verma, M.; Yamada, R.; Erlichman, C.; Lowy, I.; Timmerman, J.M. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res., 2009, 15(20), 6446-6453.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1339] [PMID: 19808874]
[93]
Merchant, M.S.; Wright, M.; Baird, K.; Wexler, L.H.; Rodriguez- Galindo, C.; Bernstein, D.; Delbrook, C.; Lodish, M.; Bishop, R.; Wolchok, J.D.; Streicher, H.; Mackall, C.L. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res., 2016, 22(6), 1364-1370.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0491] [PMID: 26534966]
[94]
Geoerger, B.; Bergeron, C.; Gore, L.; Sender, L.; Dunkel, I.J.; Herzog, C.; Brochez, L.; Cruz, O.; Nysom, K.; Berghorn, E.; Simsek, B.; Shen, J.; Pappo, A. Phase II study of ipilimumab in adolescents with unresectable stage III or IV malignant melanoma. Eur. J. Cancer, 2017, 86, 358-363.
[http://dx.doi.org/10.1016/j.ejca.2017.09.032] [PMID: 29100190]
[95]
Zhou, Q.; Munger, M.E.; Veenstra, R.G.; Weigel, B.J.; Hirashima, M.; Munn, D.H.; Murphy, W.J.; Azuma, M.; Anderson, A.C.; Kuchroo, V.K.; Blazar, B.R. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011, 117(17), 4501-4510.
[http://dx.doi.org/10.1182/blood-2010-10-310425] [PMID: 21385853]
[96]
Grosso, J.F.; Goldberg, M.V.; Getnet, D.; Bruno, T.C.; Yen, H-R.; Pyle, K.J.; Hipkiss, E.; Vignali, D.A.; Pardoll, D.M.; Drake, C.G. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J. Immunol., 2009, 182(11), 6659-6669.
[http://dx.doi.org/10.4049/jimmunol.0804211] [PMID: 19454660]
[97]
Grosso, J.F.; Kelleher, C.C.; Harris, T.J.; Maris, C.H.; Hipkiss, E.L.; De Marzo, A.; Anders, R.; Netto, G.; Getnet, D.; Bruno, T.C.; Goldberg, M.V.; Pardoll, D.M.; Drake, C.G. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest., 2007, 117(11), 3383-3392.
[http://dx.doi.org/10.1172/JCI31184] [PMID: 17932562]
[98]
Woo, S-R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; Tangsombatvisit, S.; Grosso, J.F.; Netto, G.; Smeltzer, M.P.; Chaux, A.; Utz, P.J.; Workman, C.J.; Pardoll, D.M.; Korman, A.J.; Drake, C.G.; Vignali, D.A. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res., 2012, 72(4), 917-927.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1620] [PMID: 22186141]
[99]
Dixon, K.O.; Schorer, M.; Nevin, J.; Etminan, Y.; Amoozgar, Z.; Kondo, T.; Kurtulus, S.; Kassam, N.; Sobel, R.A.; Fukumura, D.; Jain, R.K.; Anderson, A.C.; Kuchroo, V.K.; Joller, N. Functional Anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J. Immunol., 2018, 200(8), 3000-3007.
[http://dx.doi.org/10.4049/jimmunol.1700407] [PMID: 29500245]
[100]
Zhang, W.; Wang, Y.; Wang, J.; Dong, F.; Zhu, M.; Wan, W.; Li, H.; Wu, F.; Yan, X.; Ke, X. B7-H3 silencing inhibits tumor progression of mantle cell lymphoma and enhances chemosensitivity. Int. J. Oncol., 2015, 46(6), 2562-2572.
[http://dx.doi.org/10.3892/ijo.2015.2962] [PMID: 25872657]
[101]
Zhang, W.; Wang, J.; Wang, Y.; Dong, F.; Zhu, M.; Wan, W.; Li, H.; Wu, F.; Yan, X.; Ke, X. B7-H3 silencing by RNAi inhibits tumor progression and enhances chemosensitivity in U937 cells. Onco Targets Ther., 2015, 8, 1721-1733.
[http://dx.doi.org/10.2147/OTT.S85272] [PMID: 26203263]
[102]
Zheng, M.; Yu, L.; Hu, J.; Zhang, Z.; Wang, H.; Lu, D.; Tang, X.; Huang, J.; Zhong, K.; Wang, Z.; Li, Y.; Guo, G.; Liu, S.; Tong, A.; Yang, H. Efficacy of B7-H3-redirected bite and CAR-T immunotherapies against extranodal nasal natural killer/T-cell lymphoma. Transl. Oncol., 2020, 13(5), 100770.
[http://dx.doi.org/10.1016/j.tranon.2020.100770] [PMID: 32298986]
[103]
Gertner-Dardenne, J.; Fauriat, C.; Orlanducci, F.; Thibult, M-L.; Pastor, S.; Fitzgibbon, J.; Bouabdallah, R.; Xerri, L.; Olive, D. The co-receptor BTLA negatively regulates human Vγ9Vδ2 T- cell proliferation: A potential way of immune escape for lymphoma cells. Blood, 2013, 122(6), 922-931.
[http://dx.doi.org/10.1182/blood-2012-11-464685] [PMID: 23692853]
[104]
Li, W.; Blessin, N.C.; Simon, R.; Kluth, M.; Fischer, K.; Hube- Magg, C.; Makrypidi-Fraune, G.; Wellge, B.; Mandelkow, T.; Debatin, N.F.; Pott, L.; Höflmayer, D.; Lennartz, M.; Sauter, G.; Izbicki, J.R.; Minner, S.; Büscheck, F.; Uhlig, R.; Dum, D.; Krech, T.; Luebke, A.M.; Wittmer, C.; Jacobsen, F.; Burandt, E.; Steurer, S.; Wilczak, W.; Hinsch, A. Expression of the immune checkpoint receptor TIGIT in Hodgkin’s lymphoma. BMC Cancer, 2018, 18(1), 1209.
[http://dx.doi.org/10.1186/s12885-018-5111-1] [PMID: 30514251]
[105]
Josefsson, S.E.; Beiske, K.; Blaker, Y.N.; Førsund, M.S.; Holte, H.; Østenstad, B.; Kimby, E.; Köksal, H.; Wälchli, S.; Bai, B.; Smeland, E.B.; Levy, R.; Kolstad, A.; Huse, K.; Myklebust, J.H. TIGIT and PD-1 mark intratumoral T-Cells with reduced effector function in B-cell non-hodgkin lymphoma. Cancer Immunol. Res., 2019, 7(3), 355-362.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0351] [PMID: 30659053]
[106]
Kong, Y.; Zhu, L.; Schell, T.D.; Zhang, J.; Claxton, D.F.; Ehmann, W.C.; Rybka, W.B.; George, M.R.; Zeng, H.; Zheng, H. T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin. Cancer Res., 2016, 22(12), 3057-3066.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2626] [PMID: 26763253]
[107]
Yao, D.; Xu, L.; Liu, L.; Zeng, X.; Zhong, J.; Lai, J.; Zheng, R.; Jin, Z.; Chen, S.; Zha, X.; Huang, X.; Lu, Y. Increased expression of TIGIT/CD57 in peripheral blood/bone marrow NK cells in patients with chronic myeloid leukemia. BioMed Res. Int., 2020, 2020, 9531549.
[http://dx.doi.org/10.1155/2020/9531549] [PMID: 33102599]
[108]
Wang, L.; Jia, B.; Claxton, D.F.; Ehmann, W.C.; Rybka, W.B.; Mineishi, S.; Naik, S.; Khawaja, M.R.; Sivik, J.; Han, J.; Hohl, R.J.; Zheng, H. VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML. OncoImmunology, 2018, 7(9), e1469594.
[http://dx.doi.org/10.1080/2162402X.2018.1469594] [PMID: 30228937]
[109]
Hobo, W.; Norde, W.J.; Schaap, N.; Fredrix, H.; Maas, F.; Schellens, K.; Falkenburg, J.H.; Korman, A.J.; Olive, D.; van der Voort, R.; Dolstra, H. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. J. Immunol., 2012, 189(1), 39-49.
[http://dx.doi.org/10.4049/jimmunol.1102807] [PMID: 22634623]
[110]
Ma, L.; Kuai, W-X.; Qi, H-X.; Zhang, R-R.; Yuan, Y-F.; Zhao, J-O. Expression of CCR7 and Tim-3 in childhood patients with acute lymphoblastic leukemia and their predictive value for prognosis. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2019, 27(6), 1728-1735.
[PMID: 31839030]
[111]
Blaeschke, F.; Willier, S.; Stenger, D.; Lepenies, M.; Horstmann, M.A.; Escherich, G.; Zimmermann, M.; Rojas Ringeling, F.; Canzar, S.; Kaeuferle, T.; Rohlfs, M.; Binder, V.; Klein, C.; Feuchtinger, T. Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients. Leukemia, 2020, 34(10), 2607-2620.
[http://dx.doi.org/10.1038/s41375-020-0793-1] [PMID: 32203137]
[112]
Moerdler, S.; Ewart, M.; Friedman, D.L.; Kelly, K.; Pei, Q.; Peng, M. LAG-3 is expressed on a majority of tumor infiltrating lymphocytes in pediatric Hodgkin lymphoma. Leuk. Lymphoma, 2020, 62(3), 606-13.
[http://dx.doi.org/10.1080/10428194.2020.1839651] [PMID: 33112183]
[113]
Pearson, A.D.J.; Rossig, C.; Lesa, G.; Diede, S.J.; Weiner, S.; Anderson, J. ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. Eur J Cancer, 2020, 127, pp. 52-66.
[http://dx.doi.org/10.1016/j.ejca.2019.12.029]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy