Abstract
The resistance to growth inhibition commonly observed in a variety of TGFb disabled human cancers, the potential role of TGFb in the exacerbation of malignancy and the effects of TGFb in suppressing the immune system, all emphasize the importance of pathways mediated by this polypeptide to the neoplastic process. Early investigations to understand the molecular basis of cancer due to defects in TGFb signaling were concentrated on examining the abundance of biologically active TGFb and its binding to TGFb receptors. However, major breakthroughs in understanding the molecular basis of the TGFb mediated effects in cancer came from genetic evidence for inactivation of the various players in its signaling cascade. The vast majority of current evidence is derived from the identification of mutations causing structural defects in TGFb receptors and Smad genes, the downstream effectors of the TGFb signaling pathway that have emerged from the analysis of human cancers. The involvement of Smads at the receptor level upon activation by a TGFb bound receptor, their participation in signal transmission to the nucleus and their direct roles in the regulation of target genes have made the various Smad genes critical targets for inactivation of TGFb signaling in cancer. To date, eight human homologues of the Smad genes have been identified and are classified into three distinct classes based on their structure and function. In this review, we discuss TGFb signaling via the Smads and the known and predicted points at which TGFb signaling could become altered in human cancer.
Current Genomics
Title: TGFb and its Smad Connection to Cancer
Volume: 3 Issue: 5
Author(s): S. Thiagalingam, K- h. Cheng, R. L. Foy, H. J. Lee, D. Chinnappan and J. F. Ponte
Affiliation:
Abstract: The resistance to growth inhibition commonly observed in a variety of TGFb disabled human cancers, the potential role of TGFb in the exacerbation of malignancy and the effects of TGFb in suppressing the immune system, all emphasize the importance of pathways mediated by this polypeptide to the neoplastic process. Early investigations to understand the molecular basis of cancer due to defects in TGFb signaling were concentrated on examining the abundance of biologically active TGFb and its binding to TGFb receptors. However, major breakthroughs in understanding the molecular basis of the TGFb mediated effects in cancer came from genetic evidence for inactivation of the various players in its signaling cascade. The vast majority of current evidence is derived from the identification of mutations causing structural defects in TGFb receptors and Smad genes, the downstream effectors of the TGFb signaling pathway that have emerged from the analysis of human cancers. The involvement of Smads at the receptor level upon activation by a TGFb bound receptor, their participation in signal transmission to the nucleus and their direct roles in the regulation of target genes have made the various Smad genes critical targets for inactivation of TGFb signaling in cancer. To date, eight human homologues of the Smad genes have been identified and are classified into three distinct classes based on their structure and function. In this review, we discuss TGFb signaling via the Smads and the known and predicted points at which TGFb signaling could become altered in human cancer.
Export Options
About this article
Cite this article as:
Thiagalingam S., Cheng h. K-, Foy L. R., Lee J. H., Chinnappan D. and Ponte F. J., TGFb and its Smad Connection to Cancer, Current Genomics 2002; 3 (5) . https://dx.doi.org/10.2174/1389202023350291
DOI https://dx.doi.org/10.2174/1389202023350291 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Management of Ovarian Cancer In Younger Women
Reviews on Recent Clinical Trials β-Carboline Alkaloids: Biochemical and Pharmacological Functions
Current Medicinal Chemistry Mast Cells in Allergic and Inflammatory Diseases
Current Pharmaceutical Design Human Pluripotent Stem Cells for Modelling Human Liver Diseases and Cell Therapy
Current Gene Therapy Metformin and Inflammation: Its Potential Beyond Glucose-lowering Effect
Endocrine, Metabolic & Immune Disorders - Drug Targets Multitarget Network Strategies to Influence Memory and Forgetting: The Ras/Mapk Pathway as a Novel Option
Mini-Reviews in Medicinal Chemistry Disease Modifying Therapeutic Strategies in Alzheimers Disease Targeting the Amyloid Cascade
Current Neuropharmacology Advances in Peptide Pharmaceuticals
Current Pharmaceutical Biotechnology Diabetes and Vascular Disease: Basic Concepts of Nitric Oxide Physiology, Endothelial Dysfunction, Oxidative Stress and Therapeutic Possibilities
Current Vascular Pharmacology Drugs for AIDS
Mini-Reviews in Medicinal Chemistry Human Ascariasis: An Updated Review
Recent Patents on Inflammation & Allergy Drug Discovery Hypertension in Children with Autosomal Dominant Polycystic Kidney Disease (ADPKD)
Current Hypertension Reviews Indicators of Cardiovascular Risk in Metabolic Syndrome: Long Term Follow-up in Italian Patients
Current Vascular Pharmacology Genomic and Pharmacogenomic Biomarkers of Parkinson’s Disease
Current Drug Metabolism Pidotimod and Immunological Activation in Individuals Infected with HIV
Current HIV Research The Use of Lectins as Tools to Combat SARS-CoV-2
Current Pharmaceutical Design The Cross-talk between Tristetraprolin and Cytokines in Cancer
Anti-Cancer Agents in Medicinal Chemistry Protective Effects of Anesthetics on Vascular Function Related to K<sup>+</sup> Channels
Current Pharmaceutical Design Follicular Immunology Environment and the Influence on In Vitro Fertilization Outcome
Current Women`s Health Reviews Novel Subtype Specific and Universal Somatostatin Analogues: Clinical Potential and Pitfalls
Current Pharmaceutical Design