Abstract
The oxidation of catechol metabolites (2-OH-E1 / 2 / 3 and 4-OH-E1 / 2 / 3) of the endogenous estrogen, i.e. estrone (E1), 17 beta-estradiol (E2), estriol (E3), gives rise to corresponding estrogen-2,3-quinone (E-2,3-Q) and estrogen-3,4- quinone (E-3,4-Q). These reactive estrogen metabolites form covalent adducts with DNA and quinone, and semi-quinone forms of catechol estrogens -induced DNA adducts are found in various target tissues of cancer. Catecholestrogen through redox cycling produce free radicals that also generate various forms of free radical-induced DNA damage. Interaction of estrogen-induced oxidants and estrogen metabolites with DNA has been shown to generate mutations in genes. Hypermethylation at CpG sites in specific regions of the genome coupled with estrogen-induced oxidative damage at CpG sites, predominantly in the hypermethylated regions, could also cause alterations in the genome of cells of estrogen target organs that lead to mutation of genes. Increasing evidence shows that estrogen through oxidative stress and / or its metabolic products induce genetic alteration affecting both the structural as well as function of the genes. Presence of multiple forms of genetic alterations such as chromosomal aberrations, gene amplifications, DNA sequence variations, and DNA microsatellite instability in estrogen-related cancers and induction of similar genetic events by estrogen both in vivo and in vitro indicate that genetic alterations play an important role in estrogen-related carcinogenesis. This review highlights the current understanding of the estrogen-induced genetic alterations and their significance in estrogen-related carcinogenesis.
Keywords: estrogen, reactive oxygen (nitrogen) species, genetic alterations, carcinogenicity
Current Genomics
Title: Estrogen-Induced Genetic Alterations and Their Role in Carcinogenicity
Volume: 5 Issue: 3
Author(s): D. Roy and K. P. Singh
Affiliation:
Keywords: estrogen, reactive oxygen (nitrogen) species, genetic alterations, carcinogenicity
Abstract: The oxidation of catechol metabolites (2-OH-E1 / 2 / 3 and 4-OH-E1 / 2 / 3) of the endogenous estrogen, i.e. estrone (E1), 17 beta-estradiol (E2), estriol (E3), gives rise to corresponding estrogen-2,3-quinone (E-2,3-Q) and estrogen-3,4- quinone (E-3,4-Q). These reactive estrogen metabolites form covalent adducts with DNA and quinone, and semi-quinone forms of catechol estrogens -induced DNA adducts are found in various target tissues of cancer. Catecholestrogen through redox cycling produce free radicals that also generate various forms of free radical-induced DNA damage. Interaction of estrogen-induced oxidants and estrogen metabolites with DNA has been shown to generate mutations in genes. Hypermethylation at CpG sites in specific regions of the genome coupled with estrogen-induced oxidative damage at CpG sites, predominantly in the hypermethylated regions, could also cause alterations in the genome of cells of estrogen target organs that lead to mutation of genes. Increasing evidence shows that estrogen through oxidative stress and / or its metabolic products induce genetic alteration affecting both the structural as well as function of the genes. Presence of multiple forms of genetic alterations such as chromosomal aberrations, gene amplifications, DNA sequence variations, and DNA microsatellite instability in estrogen-related cancers and induction of similar genetic events by estrogen both in vivo and in vitro indicate that genetic alterations play an important role in estrogen-related carcinogenesis. This review highlights the current understanding of the estrogen-induced genetic alterations and their significance in estrogen-related carcinogenesis.
Export Options
About this article
Cite this article as:
Roy D. and Singh P. K., Estrogen-Induced Genetic Alterations and Their Role in Carcinogenicity, Current Genomics 2004; 5 (3) . https://dx.doi.org/10.2174/1389202043349471
DOI https://dx.doi.org/10.2174/1389202043349471 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Genomic Instability and Carcinogenesis: An Update
Current Genomics RNAi in Clinical Studies
Current Medicinal Chemistry Epigenetic Regulation and Therapeutic Approaches in Cancer
Current Topics in Medicinal Chemistry Correlation Between <i>BCL2</i> and <i>Mcl1</i> Single Nucleotide Polymorphisms and Chemotherapy Response in Jordanian Patients with Colorectal Cancer
Current Pharmaceutical Biotechnology Gonadotropin-Releasing Hormone Receptor System: Modulatory Role in Aging and Neurodegeneration
CNS & Neurological Disorders - Drug Targets Imaging Tumor Metastases with Molecular Probes
Current Pharmaceutical Design Ribonucleases: From Prototypes to Therapeutic Targets? (General Articles)
Current Medicinal Chemistry DLEU1: A Functional Long Noncoding RNA in Tumorigenesis
Current Pharmaceutical Design Imaging Cellular Receptors in Breast Cancers: An Overview
Current Pharmaceutical Biotechnology A Review on the Techniques for Characterizing and Predicting Human Genomic DNA Methylation
Current Bioinformatics Estrogen Receptor Modulators: Relationships of Ligand Structure, Receptor Affinity and Functional Activity
Current Topics in Medicinal Chemistry Stem Cell Therapies
Recent Patents on Regenerative Medicine Drug Targeting of Estrogen Receptor Signaling in the Cardiovascular System: Preclinical and Clinical Studies
Current Medicinal Chemistry - Cardiovascular & Hematological Agents Exploiting HPV-Induced Carcinogenesis for a Rational Drug Development in Cervical Cancer
Current Cancer Drug Targets Fibroblast Growth Factor Receptor (FGFR): A New Target for Non-small Cell Lung Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry Therapeutic Perspectives of Inhibitors of Endocannabinoid Degradation
Current Drug Targets - CNS & Neurological Disorders Progress in Synthesis and Antitumor Activities of Estradiol-linked Platinum Complex
Mini-Reviews in Medicinal Chemistry Advanced Management Options for Endometriosis
Current Women`s Health Reviews Noncovalent Binding to DNA: Still a Target in Developing Anticancer Agents
Current Medicinal Chemistry Chemotherapy Resistance in Breast Cancer
Current Cancer Therapy Reviews