Abstract
Nonsense-mediated mRNA decay (NMD) functions to ensure quality gene expression by degrading mRNAs that prematurely terminate translation. By so doing, it eliminates the production of potentially deleterious truncated proteins. NMD also degrades certain naturally occurring transcripts as a means of achieving proper levels of gene expression. With the exception of prokaryotes, NMD typifies all organisms that have been examined. As an example of its importance, NMD is required for the viability of mammalian blastocysts in culture as well as mammalian embryos in utero. The repertoire of factors that mediate NMD is larger in C. elegans, D. melanogaster, mammalian cells and, possibly, A. thaliana, than it is in S. cerevisiae and S. pombe. NMD requires not only a premature termination codon but also a downstream element. Whereas this element in S. cerevisiae, S. pombe, C. elegans, D. melanogaster and plants is debatably either a short cis-acting mRNA sequence or an abnormal 3 untranslated region, it is a splicing-generated exon junction complex of proteins in mammalian cells. In fact, NMD may have provided a selective pressure for where introns colonize within mammalian genes. There also appear to be differences among different eukaryotes as to whether NMD is restricted to newly synthesized mRNA or can also target steady-state mRNA. In summary, despite the conservation of NMD in eukaryotes, different mechanisms have evolved to define those premature termination codons that elicit NMD.
Keywords: nonsense-mediated mrna decay, rna surveillance, premature termination of translation, upf proteins
Current Genomics
Title: Nonsense-Mediated mRNA Decay: A Comparative Analysis of Different Species
Volume: 5 Issue: 3
Author(s): L. E. Maquat
Affiliation:
Keywords: nonsense-mediated mrna decay, rna surveillance, premature termination of translation, upf proteins
Abstract: Nonsense-mediated mRNA decay (NMD) functions to ensure quality gene expression by degrading mRNAs that prematurely terminate translation. By so doing, it eliminates the production of potentially deleterious truncated proteins. NMD also degrades certain naturally occurring transcripts as a means of achieving proper levels of gene expression. With the exception of prokaryotes, NMD typifies all organisms that have been examined. As an example of its importance, NMD is required for the viability of mammalian blastocysts in culture as well as mammalian embryos in utero. The repertoire of factors that mediate NMD is larger in C. elegans, D. melanogaster, mammalian cells and, possibly, A. thaliana, than it is in S. cerevisiae and S. pombe. NMD requires not only a premature termination codon but also a downstream element. Whereas this element in S. cerevisiae, S. pombe, C. elegans, D. melanogaster and plants is debatably either a short cis-acting mRNA sequence or an abnormal 3 untranslated region, it is a splicing-generated exon junction complex of proteins in mammalian cells. In fact, NMD may have provided a selective pressure for where introns colonize within mammalian genes. There also appear to be differences among different eukaryotes as to whether NMD is restricted to newly synthesized mRNA or can also target steady-state mRNA. In summary, despite the conservation of NMD in eukaryotes, different mechanisms have evolved to define those premature termination codons that elicit NMD.
Export Options
About this article
Cite this article as:
Maquat E. L., Nonsense-Mediated mRNA Decay: A Comparative Analysis of Different Species, Current Genomics 2004; 5 (3) . https://dx.doi.org/10.2174/1389202043349453
DOI https://dx.doi.org/10.2174/1389202043349453 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Viruses in Semen and Male Genital Tissues - Consequences for the Reproductive System and Therapeutic Perspectives
Current Pharmaceutical Design The Vanilloid Agonist Resiniferatoxin for Interventional-Based Pain Control
Current Topics in Medicinal Chemistry Antiepileptics and the Treatment of Neuropathic Pain: Evidence from Animal Models
Current Pharmaceutical Design MicroRNAs in the Pathobiology of Multiple Myeloma
Current Cancer Drug Targets Estrogen(s) and Analogs as a Non-Immunogenic Endogenous Ligand in Targeted Drug/DNA Delivery
Current Medicinal Chemistry Animal Modeling of Cancer Pathology and Studying Tumor Response to Therapy
Current Drug Targets Systematic Evaluation of Drug-Loaded Hydrogels for Application in Osteosarcoma Treatment
Current Pharmaceutical Biotechnology Plasminogen Activator Inhibitor-1 in Tumor Growth, Angiogenesis and Vascular Remodeling
Current Pharmaceutical Design Merkel Cell Carcinoma – Current State and the Future
Current Cancer Therapy Reviews Inhibition of the Interaction between HIV-1 Integrase and its Cofactor LEDGF/p75: A Promising Approach in Anti-Retroviral Therapy
Mini-Reviews in Medicinal Chemistry Research Advances on Anticancer Effect of Licorice
Current Bioactive Compounds STAT3: A Potential Drug Target for Tumor and Inflammation
Current Topics in Medicinal Chemistry Molecular Mechanisms and Therapeutic Application of NSAIDs and Derived Compounds in Alzheimers Disease
Current Alzheimer Research Current Perspectives on Cytokines for Anti-retroviral Therapy in AIDS Related B-cell Lymphomas
Current Drug Targets - Infectious Disorders Signal transduction in Acute Myeloid Leukemia – Implications for Novel Therapeutic Concepts.
Current Cancer Drug Targets Drosophila melanogaster in the Study of Human Neurodegeneration
CNS & Neurological Disorders - Drug Targets Mitochondrial Dysfunction and Its Relationship with mTOR Signaling and Oxidative Damage in Autism Spectrum Disorders
Mini-Reviews in Medicinal Chemistry Valproic Acid As Anti-Cancer Drug
Current Pharmaceutical Design Telomere Recombination and the ALT Pathway: A Therapeutic Perspective for Cancer
Current Pharmaceutical Design Targeting mTOR Pathways in Human Malignancies
Current Pharmaceutical Design