Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a DNA-binding enzyme that is activated by DNA breaks, converting them into an intracellular signal via poly(ADP-ribosyl)ation of nuclear proteins. Negatively charged polymers of ADP-ribose (PAR) attached to PARP-1 itself and histones lead to chromatin relaxation, facilitating the access of base excision/single strand break repair proteins and activating these repair enzymes. PARP inhibitors have been developed to investigate the role of PARP-1 in cell biology and to overcome DNA repair-mediated resistance of cancer cells to cytotoxic therapy. Since the early benzamide inhibitors of the 1980s PARP inhibitors, developed through structure-activity relationships and crystal structure-based drug design, that are 1,000x more potent have been identified. These novel PARP inhibitors have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation in advanced pre-clinical studies and are now under clinical evaluation. PARP inhibitors can also selectively kill cells and tumours with homozygous defects in the hereditary breast cancer genes, BRCA1 and BRCA2.
Keywords: Base excision repair/single strand break repair, Poly(ADP-ribose) polymerase-1 (PARP-1), PARP inhibitors
Anti-Cancer Agents in Medicinal Chemistry
Title: PARP Inhibitor Development for Systemic Cancer Targeting
Volume: 7 Issue: 5
Author(s): Tomasz Zaremba and Nicola Jane Curtin
Affiliation:
Keywords: Base excision repair/single strand break repair, Poly(ADP-ribose) polymerase-1 (PARP-1), PARP inhibitors
Abstract: Poly(ADP-ribose) polymerase 1 (PARP-1) is a DNA-binding enzyme that is activated by DNA breaks, converting them into an intracellular signal via poly(ADP-ribosyl)ation of nuclear proteins. Negatively charged polymers of ADP-ribose (PAR) attached to PARP-1 itself and histones lead to chromatin relaxation, facilitating the access of base excision/single strand break repair proteins and activating these repair enzymes. PARP inhibitors have been developed to investigate the role of PARP-1 in cell biology and to overcome DNA repair-mediated resistance of cancer cells to cytotoxic therapy. Since the early benzamide inhibitors of the 1980s PARP inhibitors, developed through structure-activity relationships and crystal structure-based drug design, that are 1,000x more potent have been identified. These novel PARP inhibitors have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation in advanced pre-clinical studies and are now under clinical evaluation. PARP inhibitors can also selectively kill cells and tumours with homozygous defects in the hereditary breast cancer genes, BRCA1 and BRCA2.
Export Options
About this article
Cite this article as:
Zaremba Tomasz and Curtin Jane Nicola, PARP Inhibitor Development for Systemic Cancer Targeting, Anti-Cancer Agents in Medicinal Chemistry 2007; 7 (5) . https://dx.doi.org/10.2174/187152007781668715
DOI https://dx.doi.org/10.2174/187152007781668715 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Recent Patents Concerning Modulators of Protein Kinase C
Recent Patents on DNA & Gene Sequences The Tumor Stroma as Mediator of Drug Resistance - A Potential Target to Improve Cancer Therapy?
Current Pharmaceutical Biotechnology Long Noncoding RNA MALAT1: Insights into its Biogenesis and Implications in Human Disease
Current Pharmaceutical Design Stem Cell Therapy for Spinal Cord Injury
Current Medicinal Chemistry Mucoadhesive Chitosan Derivatives as Novel Drug Carriers
Current Pharmaceutical Design Non-viral Delivery Systems for Breast Cancer Gene Therapy
Current Gene Therapy Synthesis and Medicinal Applications of Benzimidazoles: An Overview
Current Organic Synthesis SERMs: Evolutionary Chemistry, Revolutionary Biology
Current Pharmaceutical Design Pathways Related to the Anti-Cancer Effects of Metabolites Derived from Cerrado Biome Native Plants: An Update and Bioinformatics Analysis on Oral Squamous Cell Carcinoma
Protein & Peptide Letters Endless Peptides - Circular Forms in Nature
Current Medicinal Chemistry In Vitro and In Vivo Models of Multiple Sclerosis
CNS & Neurological Disorders - Drug Targets Molecular and Cellular Regulators of Cancer Angiogenesis
Current Cancer Drug Targets Anti Tumor Necrosis Factor-a Monoclonal Antibody (Infliximab) Therapy in Patients with Inflammatory Bowel Disease (IBD): Applications and Side Effects
Drug Design Reviews - Online (Discontinued) Flavonoids as Sirtuin Modulators
Current Topics in Medicinal Chemistry Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin
Current Cancer Drug Targets Malignant Mesothelioma: Cell Survival Pathways and Radiation Therapy
Current Respiratory Medicine Reviews Understanding and Applying Personalized Therapeutics at Systems Level:Role for Translational Bioinformatics
Current Pharmacogenomics and Personalized Medicine The Mammalian Innate Immune System: Potential Targets for Drug Development
Current Drug Targets - Immune, Endocrine & Metabolic Disorders Transcription Factors in Autoimmune Diseases
Current Pharmaceutical Design Angiogenesis Inhibitors: Implications for Combination with Conventional Therapies
Current Pharmaceutical Design