Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Advancement in Nanoparticle-based Biosensors for Point-of-care In vitro Diagnostics

Author(s): Sumera Khizar, Abdelhamid Elaissari*, Amal Ali Al-Dossary, Nadia Zine, Nicole Jaffrezic-Renault and Abdelhamid Errachid

Volume 22, Issue 10, 2022

Published on: 12 May, 2022

Page: [807 - 833] Pages: 27

DOI: 10.2174/1568026622666220401160121

Abstract

Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilization within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here, we review the nanoparticles' contribution to the biosensors field and their potential applications.

Keywords: Biosensors, Nanoparticles, Detection, Nucleic acids, Glucose, Pathogens, In vitro diagnostics.

Next »
Graphical Abstract

[1]
Zeng, W.; Wang, H.; Li, Z. Nanomaterials for sensing applications. J. Nanotechnol., 2016, 2016, 1-2.
[http://dx.doi.org/10.1155/2016/2083948]
[2]
Kumar, H. Kuča, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors (Basel), 2020, 20(7), 1966.
[http://dx.doi.org/10.3390/s20071966] [PMID: 32244581]
[3]
Rai, M.; Gade, A.; Gaikwad, S.; Marcato, P.D.; Durán, N. Biomedical applications of nanobiosensors: The state-of-the-art. J. Braz. Chem. Soc., 2012, 23, 14-24.
[http://dx.doi.org/10.1590/S0103-50532012000100004]
[4]
Pirzada, M.; Altintas, Z. Nanomaterials for healthcare biosensing applications. Sensors (Basel), 2019, 19(23), 5311.
[http://dx.doi.org/10.3390/s19235311] [PMID: 31810313]
[5]
Munawar, A.; Ong, Y.; Schirhagl, R.; Tahir, M.A.; Khan, W.S.; Bajwa, S.Z. Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances, 2019, 9(12), 6793-6803.
[http://dx.doi.org/10.1039/C8RA10144B]
[6]
Chen, Z.; Liu, Y.; Wang, Y.; Zhao, X.; Li, J. Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru(bpy)3(2+)-doped silica nanoprobe. Anal. Chem., 2013, 85(9), 4431-4438.
[http://dx.doi.org/10.1021/ac303572g] [PMID: 23560766]
[7]
Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev., 2017, 6(3), 301-329.
[http://dx.doi.org/10.1515/ntrev-2016-0014] [PMID: 29335674]
[8]
Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterial-based sensors., 2020.
[http://dx.doi.org/10.1016/B978-0-12-816699-4.00013-X]
[9]
Su, H.; Li, S.; Jin, Y.; Xian, Z.; Yang, D.; Zhou, W.; Mangaran, F.; Leung, F.; Sithamparanathan, G.; Kerman, K. Nanomaterial-based biosensors for biological detections. Adv. Health Care Technol., 2017, 3, 19-29.
[http://dx.doi.org/10.2147/AHCT.S94025]
[10]
Corrie, S.R.; Plebanski, M. The emerging role of nanomaterials in immunological sensing - a brief review. Mol. Immunol., 2018, 98, 28-35.
[http://dx.doi.org/10.1016/j.molimm.2017.12.017] [PMID: 29325980]
[11]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[12]
Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4), 4033-4041.
[http://dx.doi.org/10.1021/nn501226z] [PMID: 24655084]
[13]
Noah, N.M.; Ndangili, P.M. Current trends of nanobiosensors for point-of-care diagnostics. J. Anal. Methods Chem., 2019, 2019, 2179718.
[http://dx.doi.org/10.1155/2019/2179718] [PMID: 31886019]
[14]
Vashist, S.K.; Venkatesh, A.G.; Mitsakakis, K.; Czilwik, G.; Roth, G.; von Stetten, F.; Zengerle, R. Nanotechnology-based biosensors and diagnostics: Technology push versus industrial/healthcare requirements. Bionanoscience, 2012, 2(3), 115-126.
[http://dx.doi.org/10.1007/s12668-012-0047-4]
[15]
Giouroudi, I.; Kokkinis, G. Recent advances in magnetic microfluidic biosensors. Nanomaterials (Basel), 2017, 7(7), 171.
[http://dx.doi.org/10.3390/nano7070171] [PMID: 28684665]
[16]
Jackson, T.C.; Patani, B.O.; Ekpa, D.E. Nanotechnology in diagnosis: A Review. Adv. Nanopart., 2017, 06(3), 93-102.
[http://dx.doi.org/10.4236/anp.2017.63008]
[17]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[18]
Angioletti-Uberti, S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. NPJ Comput. Mater., 2017, 3, 1-15.
[http://dx.doi.org/10.1038/s41524-017-0050-y]
[19]
Szeto, G.L.; Lavik, E.B. Materials design at the interface of nanoparticles and innate immunity. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(9), 1610-1618.
[http://dx.doi.org/10.1039/C5TB01825K] [PMID: 27453783]
[20]
Mohsin, A.; Liu, L.; Liu, P.; Deng, W.; Ivanov, I.N.; Li, G.; Dyck, O.E.; Duscher, G.; Dunlap, J.R.; Xiao, K.; Gu, G. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano, 2013, 7(10), 8924-8931.
[http://dx.doi.org/10.1021/nn4034019] [PMID: 24004046]
[21]
Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem., 2017, 97, 445-457.
[http://dx.doi.org/10.1016/j.trac.2017.10.005] [PMID: 32287543]
[22]
Li, J. Ultrasensitive and Highly Selective Electrochemical Biosensor for HIV gene detection based on Amino-reduced graphene oxide and β-cyclodextrin modified glassy carbon electrode. Int. J. Electrochem. Sci., 2020, 15, 2727-2738.
[http://dx.doi.org/10.20964/2020.03.62]
[23]
Dhanekar, S.; Jain, S. Porous silicon biosensor: Current status. Biosens. Bioelectron., 2013, 41, 54-64.
[http://dx.doi.org/10.1016/j.bios.2012.09.045] [PMID: 23122704]
[24]
Veyret, R.; Elaissari, A.; Marianneau, P.; Sall, A.A.; Delair, T. Magnetic colloids for the generic capture of viruses. Anal. Biochem., 2005, 346(1), 59-68.
[http://dx.doi.org/10.1016/j.ab.2005.07.036] [PMID: 16157288]
[25]
Zheng, X.; Zhao, L.; Wen, D.; Wang, X.; Yang, H.; Feng, W.; Kong, J. Ultrasensitive fluorescent detection of HTLV-II DNA based on magnetic nanoparticles and atom transfer radical polymerization signal amplification. Talanta, 2020, 207, 120290.
[http://dx.doi.org/10.1016/j.talanta.2019.120290] [PMID: 31594607]
[26]
Chao, J.; Cao, W.; Su, S.; Weng, L.; Song, S.; Fan, C.; Wang, L. Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(10), 1757-1769.
[http://dx.doi.org/10.1039/C5TB02135A] [PMID: 32263053]
[27]
Zhang, J.; Mou, L.; Jiang, X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. (Camb.), 2020, 11(4), 923-936.
[http://dx.doi.org/10.1039/C9SC06497D] [PMID: 34084347]
[28]
Zeng, S.; Yong, K-T.; Roy, I.; Dinh, X-Q.; Yu, X.; Luan, F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics, 2011, 6(3), 491-506.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[29]
Loiseau, A.; Zhang, L.; Hu, D.; Salmain, M.; Mazouzi, Y.; Flack, R.; Liedberg, B.; Boujday, S. Core-shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl. Mater. Interfaces, 2019, 11(50), 46462-46471.
[http://dx.doi.org/10.1021/acsami.9b14980] [PMID: 31744295]
[30]
Chang, C.C.; Chen, C.P.; Wu, T.H.; Yang, C.H.; Lin, C.W.; Chen, C.Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials (Basel), 2019, 9(6), 861.
[http://dx.doi.org/10.3390/nano9060861] [PMID: 31174348]
[31]
Sonntag, M.D.; Klingsporn, J.M.; Zrimsek, A.B.; Sharma, B.; Ruvuna, L.K.; Van Duyne, R.P. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev., 2014, 43(4), 1230-1247.
[http://dx.doi.org/10.1039/C3CS60187K] [PMID: 23982428]
[32]
Khizar, S.; Ben Halima, H.; Ahmad, N.M.; Zine, N.; Errachid, A.; Elaissari, A. Magnetic nanoparticles in microfluidic and sensing: From transport to detection. Electrophoresis, 2020, 41(13-14), 1206-1224.
[http://dx.doi.org/10.1002/elps.201900377] [PMID: 32347555]
[33]
Singh, A.; Kumar, V. Iron oxide nanoparticles in biosensors, imaging and drug delivery applications—a complete tool. In: Internet of Things and Big Data Applications. Intelligent Systems Reference Library. Springer, Cham, 2020, 180, pp. 243-252.
[http://dx.doi.org/10.1007/978-3-030-39119-5_20]
[34]
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2, 63.
[http://dx.doi.org/10.3389/fchem.2014.00063] [PMID: 25221775]
[35]
Nischk, M.; Mazierski, P.; Wei, Z.; Siuzdak, K.; Kouame, N.A.; Kowalska, E.; Remita, H.; Zaleska-Medynska, A. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl. Surf. Sci., 2016, 387, 89-102.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.066] [PMID: 27917012]
[36]
Chen, L.; Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng. C, 2020, 112, 110924.
[http://dx.doi.org/10.1016/j.msec.2020.110924] [PMID: 32409074]
[37]
Yu, H.; Yu, J.; Li, L.; Zhang, Y.; Xin, S.; Ni, X.; Sun, Y.; Song, K. Recent Progress of the practical applications of the platinum nanoparticle-based electrochemistry biosensors. Front Chem., 2021, 9, 677876.
[http://dx.doi.org/10.3389/fchem.2021.677876] [PMID: 34012952]
[38]
Srinivasan, S.Y.; Paknikar, K.M.; Bodas, D.; Gajbhiye, V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine (Lond.), 2018, 13(10), 1221-1238.
[http://dx.doi.org/10.2217/nnm-2017-0379] [PMID: 29882719]
[39]
Wang, Y.; Hu, Y.; He, Q.; Yan, J.; Xiong, H.; Wen, N.; Cai, S.; Peng, D.; Liu, Y.; Liu, Z. Metal-organic frameworks for virus detection. Biosens. Bioelectron., 2020, 169, 112604.
[http://dx.doi.org/10.1016/j.bios.2020.112604] [PMID: 32980805]
[40]
Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci., 2020, 21(7), 2375.
[http://dx.doi.org/10.3390/ijms21072375] [PMID: 32235542]
[41]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2017, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[42]
Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron., 2017, 98, 437-448.
[http://dx.doi.org/10.1016/j.bios.2017.07.010] [PMID: 28711826]
[43]
Sobczak-Kupiec, A.; Venkatesan, J.; Alhathal AlAnezi, A.; Walczyk, D.; Farooqi, A.; Malina, D.; Hosseini, S.H.; Tyliszczak, B. Magnetic nanomaterials and sensors for biological detection. Nanomedicine, 2016, 12(8), 2459-2473.
[http://dx.doi.org/10.1016/j.nano.2016.07.003] [PMID: 27456162]
[44]
Qing, Z.; Bai, A.; Xing, S.; Zou, Z.; He, X.; Wang, K.; Yang, R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens. Bioelectron., 2019, 137, 96-109.
[http://dx.doi.org/10.1016/j.bios.2019.05.014] [PMID: 31085403]
[45]
Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces, 2019, 178, 385-394.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.013] [PMID: 30903977]
[46]
Wang, W.; Chen, C.; Qian, M.; Zhao, X.S. Aptamer biosensor for protein detection using gold nanoparticles. Anal. Biochem., 2008, 373(2), 213-219.
[http://dx.doi.org/10.1016/j.ab.2007.11.013] [PMID: 18054771]
[47]
Mereuta, L.; Asandei, A.; Dragomir, I.S.; Bucataru, I.C.; Park, J.; Seo, C.H.; Park, Y.; Luchian, T. Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Sci. Rep., 2020, 10(1), 11323.
[http://dx.doi.org/10.1038/s41598-020-68258-x] [PMID: 32647249]
[48]
Ying, N.; Ju, C.; Li, Z.; Liu, W.; Wan, J. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta, 2017, 164, 432-438.
[http://dx.doi.org/10.1016/j.talanta.2016.10.098] [PMID: 28107953]
[49]
Tu, W.; Cao, H.; Zhang, L.; Bao, J.; Liu, X.; Dai, Z. Dual signal amplification using gold nanoparticles-enhanced zinc selenide nanoflakes and p19 protein for ultrasensitive photoelectrochemical biosensing of microrna in cell. Anal. Chem., 2016, 88(21), 10459-10465.
[http://dx.doi.org/10.1021/acs.analchem.6b02381] [PMID: 27723295]
[50]
Ma, K.; Sinha, A.; Dang, X.; Zhao, H. Electrochemical preparation of gold nanoparticles-polypyrrole co-decorated 2d mos2 nanocomposite sensor for sensitive detection of glucose. J. Electrochem. Soc., 2019, 166(2), B147-B154.
[http://dx.doi.org/10.1149/2.1231902jes]
[51]
Baek, S.H.; Roh, J.; Park, C.Y.; Kim, M.W.; Shi, R.; Kailasa, S.K.; Park, T.J. Cu-nanoflower decorated gold nanoparticles-graphene oxide nanofiber as electrochemical biosensor for glucose detection. Mater. Sci. Eng. C, 2020, 107, 110273.
[http://dx.doi.org/10.1016/j.msec.2019.110273] [PMID: 31761219]
[52]
German, N.; Ramanavicius, A.; Ramanaviciene, A. Amperometric glucose biosensor based on electrochemically deposited gold nanoparticles covered by polypyrrole. Electroanalysis, 2017, 29(5), 1267-1277.
[http://dx.doi.org/10.1002/elan.201600680]
[53]
Gao, Y.; Wu, Y.; Di, J. Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 207-212.
[http://dx.doi.org/10.1016/j.saa.2016.09.023] [PMID: 27664545]
[54]
Lin, D.; Pillai, R.G.; Lee, W.E.; Jemere, A.B. An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G. Mikrochim. Acta, 2019, 186(3), 169.
[http://dx.doi.org/10.1007/s00604-019-3282-3] [PMID: 30741345]
[55]
Elahi, N.; Kamali, M.; Baghersad, M.H.; Amini, B. A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Mater. Sci. Eng. C, 2019, 105, 110113.
[http://dx.doi.org/10.1016/j.msec.2019.110113] [PMID: 31546438]
[56]
Du, J.; Singh, H.; Dong, W.; Bai, Y.; Yi, T-H. Colorimetric detection of Listeria monocytogenes using one-pot biosynthesized flower-shaped gold nanoparticles. Sens. Actuators B Chem., 2018, 265, 285-292.
[http://dx.doi.org/10.1016/j.snb.2018.03.067]
[57]
Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; Zhang, Y.; Wang, J.; Huang, B.; Lin, Y.; Yang, J.; Cai, W.; Wang, X.; Cheng, J.; Chen, Z.; Sun, K.; Pan, W.; Zhan, Z.; Chen, L.; Ye, F. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol., 2020, 92(9), 1518-1524.
[http://dx.doi.org/10.1002/jmv.25727] [PMID: 32104917]
[58]
Safarpour, H.; Majdi, H.; Masjedi, A.; Pagheh, A.S.; Pereira, M.L.; Rodrigues Oliveira, S.M.; Ahmadpour, E. Development of optical biosensor using protein a-conjugated chitosan-gold nanoparticles for diagnosis of cystic echinococcosis. Biosensors (Basel), 2021, 11(5), 134.
[http://dx.doi.org/10.3390/bios11050134] [PMID: 33923009]
[59]
Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by n gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 2020, 14(6), 7617-7627.
[http://dx.doi.org/10.1021/acsnano.0c03822] [PMID: 32437124]
[60]
Deb, R.; Pal, P.; Chaudhary, P.; Bhadsavle, S.; Behera, M. Parmanand; Gautam, D.; Roshan, M.; Vats, A.; Ludri, A.; Gupta, V.K.; De, S. Development of gold nanoparticle-based visual assay for rapid detection of Escherichia coli specific DNA in milk of cows affected with mastitis. Lebensm. Wiss. Technol., 2022, 155, 112901.
[http://dx.doi.org/10.1016/j.lwt.2021.112901]
[61]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[62]
Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, Ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 2020, 14(12), 17028-17045.
[http://dx.doi.org/10.1021/acsnano.0c06392] [PMID: 33079516]
[63]
Sun, H.; Kong, J.; Wang, Q.; Liu, Q.; Zhang, X. Dual signal amplification by eATRP and DNA-templated silver nanoparticles for ultrasensitive electrochemical detection of nucleic acids. ACS Appl. Mater. Interfaces, 2019, 11(31), 27568-27573.
[http://dx.doi.org/10.1021/acsami.9b08037] [PMID: 31313584]
[64]
Elhakim, H.K.A.; Azab, S.M.; Fekry, A.M. A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. Mater. Sci. Eng. C, 2018, 92, 489-495.
[http://dx.doi.org/10.1016/j.msec.2018.06.063] [PMID: 30184774]
[65]
Hou, L.; Huang, Y.; Hou, W.; Yan, Y.; Liu, J.; Xia, N. Modification-free amperometric biosensor for the detection of wild-type p53 protein based on the in situ formation of silver nanoparticle networks for signal amplification. Int. J. Biol. Macromol., 2020, 158, 580-586.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.271] [PMID: 32380113]
[66]
Anderson, K.; Poulter, B.; Dudgeon, J.; Li, S.E.; Ma, X. A Highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2. Sensors (Basel), 2017, 17(8), 1807.
[http://dx.doi.org/10.3390/s17081807] [PMID: 28783068]
[67]
Usman, M.; Pan, L.; Farid, A.; Khan, A.S.; Yongpeng, Z.; Khan, M.A.; Hashim, M. Carbon nanocoils-nickel foam decorated with silver nanoparticles/sheets using a novel stirring assisted electrodeposition technique for non-enzymatic glucose sensor. Carbon, 2020, 157, 761-766.
[http://dx.doi.org/10.1016/j.carbon.2019.10.069]
[68]
Maruthupandy, M.; Rajivgandhi, G.; Muneeswaran, T.; Vennila, T.; Quero, F.; Song, J.M. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int. J. Biol. Macromol., 2019, 121, 822-828.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.063] [PMID: 30342135]
[69]
Nguyen, N.D.; Nguyen, T.V.; Chu, A.D.; Tran, H.V.; Tran, L.T.; Huynh, C.D. A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose. Arab. J. Chem., 2018, 11(7), 1134-1143.
[http://dx.doi.org/10.1016/j.arabjc.2017.12.035]
[70]
Hassanpour, S.; Saadati, A.; Hasanzadeh, M. pDNA conjugated with citrate capped silver nanoparticles towards ultrasensitive bio-assay of Haemophilus influenza in human biofluids: A novel optical biosensor. J. Pharm. Biomed. Anal., 2020, 180, 113050.
[http://dx.doi.org/10.1016/j.jpba.2019.113050] [PMID: 31881396]
[71]
Rai, P.K.; Usmani, Z.; Thakur, V.K.; Gupta, V.K.; Mishra, Y.K. Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude. Curr. Res. Green Sustainable Chem., 2020, 3, 100011.
[http://dx.doi.org/10.1016/j.crgsc.2020.100011]
[72]
Du, T.; Zhang, J.; Li, C.; Song, T.; Li, P.; Liu, J.; Du, X.; Wang, S. Gold/silver hybrid nanoparticles with enduring inhibition of coronavirus multiplication through multisite mechanisms. Bioconjug. Chem., 2020, 31(11), 2553-2563.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00506] [PMID: 33073571]
[73]
Allawadhi, P.; Singh, V.; Khurana, A.; Khurana, I.; Allwadhi, S.; Kumar, P.; Banothu, A.K.; Thalugula, S.; Barani, P.J.; Naik, R.R. Silver nanoparticle based multifunctional approach for combating COVID-19. Sens. Int., 2021, 2, 100101.
[http://dx.doi.org/10.1016/j.sintl.2021.100101]
[74]
Altay, C.; Senay, R.H.; Eksin, E.; Congur, G.; Erdem, A.; Akgol, S. Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids. Talanta, 2017, 164, 175-182.
[http://dx.doi.org/10.1016/j.talanta.2016.11.012] [PMID: 28107914]
[75]
Gupta, S.; Kakkar, V. DARPin based GMR Biosensor for the detection of ESAT-6 tuberculosis protein. Tuberculosis (Edinb.), 2019, 118, 101852.
[http://dx.doi.org/10.1016/j.tube.2019.07.003] [PMID: 31430697]
[76]
Huerta-Aguilar, C.A.; Ramirez-Guzman, B.; Thangarasu, P.; Narayanan, J.; Singh, N. Simultaneous recognition of cysteine and cytosine using thiophene-based organic nanoparticles decorated with Au NPs and bio-imaging of cells. Photochem. Photobiol. Sci., 2019, 18(7), 1761-1772.
[http://dx.doi.org/10.1039/C9PP00060G]
[77]
Jaime, J.; Rangel, G.; Muñoz-Bonilla, A.; Mayoral, A.; Herrasti, P. Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sens. Actuators B Chem., 2017, 238, 693-701.
[http://dx.doi.org/10.1016/j.snb.2016.07.059]
[78]
Sanaeifar, N.; Rabiee, M.; Abdolrahim, M.; Tahriri, M.; Vashaee, D.; Tayebi, L. A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem., 2017, 519, 19-26.
[http://dx.doi.org/10.1016/j.ab.2016.12.006] [PMID: 27956150]
[79]
Onay, A.; Dogan, Ü.; Ciftci, H.; Cetin, D.; Suludere, Z.; Tamer, U. Amperometric glucose sensor based on the glucose oxidase enzyme immobilized on graphite rod electrode modified with Fe3O4-CS-Au magnetic nanoparticles. Ionics, 2018, 24(12), 4015-4022.
[http://dx.doi.org/10.1007/s11581-018-2559-6]
[80]
Lee, C-Y.; Wu, L-P.; Chou, T-T.; Hsieh, Y-Z. Functional magnetic nanoparticles–assisted electrochemical biosensor for eosinophil cationic protein in cell culture. Sens. Actuators B Chem., 2018, 257, 672-677.
[http://dx.doi.org/10.1016/j.snb.2017.11.033]
[81]
Wang, D.; Chen, Q.; Huo, H.; Bai, S.; Cai, G.; Lai, W.; Lin, J. Efficient separation and quantitative detection of Listeria monocytogenes based on screen-printed interdigitated electrode, urease and magnetic nanoparticles. Food Control, 2017, 73, 555-561.
[http://dx.doi.org/10.1016/j.foodcont.2016.09.003]
[82]
Ghasemi, R.; Mirahmadi-Zare, S.Z.; Nasr-Esfahani, M.H.; Allafchian, A.; Behmanesh, M. Optical biosensing of Streptococcus agalactiae based on core/shell magnetic nanoparticle-quantum dot. Anal. Bioanal. Chem., 2019, 411(25), 6733-6743.
[http://dx.doi.org/10.1007/s00216-019-02046-z] [PMID: 31402423]
[83]
Li, T.; Jin, L.; Feng, K.; Yang, T.; Yue, X.; Wu, B.; Ding, S.; Liang, X.; Huang, G.; Zhang, J. A novel low-field NMR biosensor based on dendritic superparamagnetic iron oxide nanoparticles for the rapid detection of Salmonella in milk. Lebensm. Wiss. Technol., 2020, 133, 110149.
[http://dx.doi.org/10.1016/j.lwt.2020.110149]
[84]
Zhao, Z.; Cui, H.; Song, W.; Ru, X.; Zhou, W.; Yu, X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. biorxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.22.961268]
[85]
Tian, B.; Gao, F.; Fock, J.; Dufva, M.; Hansen, M.F. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens. Bioelectron., 2020, 165, 112356.
[http://dx.doi.org/10.1016/j.bios.2020.112356] [PMID: 32510339]
[86]
Chacón-Torres, J.C.; Reinoso, C.; Navas-León, D.G.; Briceño, S.; González, G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries’ needs in the detection and control of SARS-CoV-2. Sci. Rep., 2020, 10(1), 19004.
[http://dx.doi.org/10.1038/s41598-020-75798-9] [PMID: 33149153]
[87]
Ji, Z.; Zhang, C.; Ye, Y.; Ji, J.; Dong, H.; Forsberg, E.; Cheng, X.; He, S. Magnetically enhanced liquid SERS for ultrasensitive analysis of bacterial and SARS-CoV-2 biomarkers. Front. Bioeng. Biotechnol., 2021, 9, 735711.
[http://dx.doi.org/10.3389/fbioe.2021.735711] [PMID: 34660557]
[88]
Chen, K.L.; Yang, Z.Y.; Lin, C.W. A magneto-optical biochip for rapid assay based on the cotton-mouton effect of γ-Fe2O3@Au core/shell nanoparticles. J. Nanobiotechnology, 2021, 19(1), 301.
[http://dx.doi.org/10.1186/s12951-021-01030-z] [PMID: 34598682]
[89]
Viter, R.; Tereshchenko, A.; Smyntyna, V.; Ogorodniichuk, J.; Starodub, N.; Yakimova, R.; Khranovskyy, V.; Ramanavicius, A. Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella. Sens. Actuators B Chem., 2017, 252, 95-102.
[http://dx.doi.org/10.1016/j.snb.2017.05.139]
[90]
Nadzirah, S.; Hashim, U.; Gopinath, S.C.B.; Parmin, N.A.; Hamzah, A.A.; Yu, H.W.; Dee, C.F. Titanium dioxide-mediated resistive nanobiosensor for E. coli O157:H7. Mikrochim. Acta, 2020, 187(4), 235.
[http://dx.doi.org/10.1007/s00604-020-4214-y] [PMID: 32185529]
[91]
Mathelié-Guinlet, M.; Cohen-Bouhacina, T.; Gammoudi, I.; Martin, A.; Béven, L.; Delville, M-H.; Grauby-Heywang, C. Silica nanoparticles-assisted electrochemical biosensor for the rapid, sensitive and specific detection of Escherichia coli. Sens. Actuators B Chem., 2019, 292, 314-320.
[http://dx.doi.org/10.1016/j.snb.2019.03.144]
[92]
Al-Mokaram, A.M.A.A.A.; Yahya, R.; Abdi, M.M.; Mahmud, H.N.M.E. The development of non-enzymatic glucose biosensors based on electrochemically prepared Polypyrrole-chitosan-titanium dioxide nanocomposite films. Nanomaterials (Basel), 2017, 7(6), 129.
[http://dx.doi.org/10.3390/nano7060129] [PMID: 28561760]
[93]
Udourioh, G.A.; Solomon, M.M.; Epelle, E.I. Metal organic frameworks as biosensing materials for COVID-19. Cell. Mol. Bioeng., 2021, 14(6), 1-19.
[http://dx.doi.org/10.1007/s12195-021-00686-9] [PMID: 34249167]
[94]
Shu, Y.; Yan, Y.; Chen, J.; Xu, Q.; Pang, H.; Hu, X. Ni and NiO Nanoparticles decorated metal-organic framework nanosheets: Facile synthesis and high-performance nonenzymatic glucose detection in human serum. ACS Appl. Mater. Interfaces, 2017, 9(27), 22342-22349.
[http://dx.doi.org/10.1021/acsami.7b07501] [PMID: 28627873]
[95]
Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors (Basel), 2020, 20(20), 5871.
[http://dx.doi.org/10.3390/s20205871] [PMID: 33080785]
[96]
Kashish; Bansal, S.; Jyoti, A.; Mahato, K.; Chandra, P.; Prakash, R. Highly sensitive in vitro biosensor for enterotoxigenic escherichia coli detection based on ssdna anchored on PtNPs-chitosan nanocomposite. Electroanalysis, 2017, 29(11), 2665-2671.
[http://dx.doi.org/10.1002/elan.201600169]
[97]
Pedro, G.C.; Gorza, F.D.S.; da Silva, R.J.; do Nascimento, K.T.O.; Medina-Llamas, J.C.; Chávez-Guajardo, A.E.; Alcaraz-Espinoza, J.J.; de Melo, C.P. A novel nucleic acid fluorescent sensing platform based on nanostructured films of intrinsically conducting polymers. Anal. Chim. Acta, 2019, 1047, 214-224.
[http://dx.doi.org/10.1016/j.aca.2018.10.010] [PMID: 30567653]
[98]
Cho, I.H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res., 2020, 24(1), 6.
[http://dx.doi.org/10.1186/s40824-019-0181-y] [PMID: 32042441]
[99]
Caminade, A.M.; Yan, D.; Smith, D.K. Dendrimers and hyperbranched polymers. Chem. Soc. Rev., 2015, 44(12), 3870-3873.
[http://dx.doi.org/10.1039/C5CS90049B] [PMID: 26024369]
[100]
Shu, T.; Shen, Q.; Zhang, X.; Serpe, M.J. Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst (Lond.), 2020, 145(17), 5713-5724.
[http://dx.doi.org/10.1039/D0AN00686F] [PMID: 32743626]
[101]
Vamvakaki, V.; Chaniotakis, N.A. Pesticide detection with a liposome-based nano-biosensor. Biosens. Bioelectron., 2007, 22(12), 2848-2853.
[http://dx.doi.org/10.1016/j.bios.2006.11.024] [PMID: 17223333]
[102]
Shukla, S.K.; Govender, P.P.; Tiwari, A. Polymeric micellar structures for biosensor technology. Polymeric Micellar Struc. Biosens Technol., 2016, 24, 143-161.
[http://dx.doi.org/10.1016/bs.abl.2016.04.005]
[103]
Idris, A.O.; Mamba, B.; Feleni, U. Poly (propylene imine) dendrimer: A potential nanomaterial for electrochemical application. Mater. Chem. Phys., 2020, 244, 122641.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122641]
[104]
Li, S.; Yang, Y.; Lin, X.; Li, Z.; Ma, G.; Su, Z.; Zhang, S. Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines. Vaccine, 2020, 38(11), 2478-2486.
[http://dx.doi.org/10.1016/j.vaccine.2020.02.004] [PMID: 32057580]
[105]
Liang, Z.; Liu, Y.; Zhang, Q.; Guo, Y.; Ma, Q. The high luminescent polydopamine nanosphere-based ECL biosensor with steric effect for MUC1 detection. Chem. Eng. J., 2020, 385, 123825.
[http://dx.doi.org/10.1016/j.cej.2019.123825]
[106]
Kaur, G.; Raj, T.; Singhal, S.; Kaur, N. Tricyclic dihydropyrimidine-based multifunctional organic nanoparticles for detection of Ag (I) ions and spermidine: Real-Time application. Sens. Actuators B Chem., 2018, 255, 424-432.
[http://dx.doi.org/10.1016/j.snb.2017.08.064]
[107]
Pandey, G.; Chaudhari, R.; Joshi, B.; Choudhary, S.; Kaur, J.; Joshi, A. Fluorescent biocompatible platinum-porphyrin-doped polymeric hybrid particles for oxygen and glucose biosensing. Sci. Rep., 2019, 9(1), 5029.
[http://dx.doi.org/10.1038/s41598-019-41326-7] [PMID: 30903010]
[108]
Mohamed, O.; Al-Othman, A.; Al-Nashash, H.; Tawalbeh, M.; Almomani, F.; Rezakazemi, M. Fabrication of titanium dioxide nanomaterial for implantable highly flexible composite bioelectrode for biosensing applications. Chemosphere, 2021, 273, 129680.
[http://dx.doi.org/10.1016/j.chemosphere.2021.129680] [PMID: 33486350]
[109]
Chen, Z.; Zhang, Z.; Zhai, X.; Li, Y.; Lin, L.; Zhao, H.; Bian, L.; Li, P.; Yu, L.; Wu, Y.; Lin, G. Rapid and sensitive detection of anti-sars-cov-2 igg, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem., 2020, 92(10), 7226-7231.
[http://dx.doi.org/10.1021/acs.analchem.0c00784] [PMID: 32323974]
[110]
Melnychuk, N.; Ashokkumar, P.; Aparin, I.O.; Klymchenko, A.S. Pre- and postfunctionalization of dye-loaded polymeric nanoparticles for preparation of FRET-based nanoprobes. ACS Appl. Polym. Mater., 2021, 4(1), 44-53.
[http://dx.doi.org/10.1021/acsapm.1c00819]
[111]
Shende, P.; Sahu, P. Enzyme bioconjugated PAMAM dendrimers for estimation of glucose in saliva. International Journal of Polymeric Materials and Polymeric Biomaterials, , 1-7.2020
[http://dx.doi.org/10.1080/00914037.2020.1725762]
[112]
Li, F.; Li, F.; Aguilar, Z.P.; Xiong, Y.; Xu, H. Polyamidoamine (PAMAM) dendrimer-mediated biotin amplified immunomagnetic separation method coupled with flow cytometry for viable Listeria monocytogenes detection. Sens. Actuators B Chem., 2018, 257, 286-294.
[http://dx.doi.org/10.1016/j.snb.2017.10.152]
[113]
Chowdhury, A.D.; Sharmin, S.; Nasrin, F.; Yamazaki, M.; Abe, F.; Suzuki, T.; Park, E.Y. Use of target-specific liposome and magnetic nanoparticle conjugation for the amplified detection of norovirus. ACS Appl. Bio Mater., 2020, 3(6), 3560-3568.
[http://dx.doi.org/10.1021/acsabm.0c00213] [PMID: 35025226]
[114]
Guan, H.; Gong, D.; Song, Y.; Han, B.; Zhang, N. Biosensor composed of integrated glucose oxidase with liposome microreactors/chitosan nanocomposite for amperometric glucose sensing. Colloids Surf. A Physicochem. Eng. Asp., 2019, 574, 260-267.
[http://dx.doi.org/10.1016/j.colsurfa.2019.04.076]
[115]
Imran, H.; Manikandan, P.N.; Dharuman, V. Graphene oxide supported liposomes for efficient label free electrochemical DNA biosensing. Sens. Actuators B Chem., 2018, 260, 841-851.
[http://dx.doi.org/10.1016/j.snb.2018.01.103]
[116]
Deng, H.; Liu, Q.; Wang, X.; Huang, R.; Liu, H.; Lin, Q.; Zhou, X.; Xing, D. Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens. Bioelectron., 2017, 87, 931-940.
[http://dx.doi.org/10.1016/j.bios.2016.09.043] [PMID: 27664413]
[117]
Tanaka, S.; Kaneti, Y.V.; Bhattacharjee, R.; Islam, M.N.; Nakahata, R.; Abdullah, N.; Yusa, S.I.; Nguyen, N.T.; Shiddiky, M.J.A.; Yamauchi, Y.; Hossain, M.S.A. Mesoporous iron oxide synthesized using poly(styrene-b-acrylic acid-b-ethylene glycol) block copolymer micelles as templates for colorimetric and electrochemical detection of glucose. ACS Appl. Mater. Interfaces, 2018, 10(1), 1039-1049.
[http://dx.doi.org/10.1021/acsami.7b13835] [PMID: 29185699]
[118]
Serafín, V.; Razzino, C.A.; Gamella, M.; Pedrero, M.; Povedano, E.; Montero-Calle, A.; Barderas, R.; Calero, M.; Lobo, A.O.; Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Disposable immunoplatforms for the simultaneous determination of biomarkers for neurodegenerative disorders using poly(amidoamine) dendrimer/gold nanoparticle nanocomposite. Anal. Bioanal. Chem., 2021, 413(3), 799-811.
[http://dx.doi.org/10.1007/s00216-020-02724-3] [PMID: 32474723]
[119]
Wu, F.; Yuan, H.; Zhou, C.; Mao, M.; Liu, Q.; Shen, H.; Cen, Y.; Qin, Z.; Ma, L.; Song, Li,L L. Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens. Bioelectron., 2016, 77, 464-470.
[http://dx.doi.org/10.1016/j.bios.2015.10.002] [PMID: 26454828]
[120]
Chen, F.; Yao, Y.; Lin, H.; Hu, Z.; Hu, W.; Zang, Z.; Tang, X. Synthesis of CuInZnS quantum dots for cell labelling applications. Ceram. Int., 2018, 44, S34-S37.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.276]
[121]
Zhang, X.; Guo, Q.; Cui, D. Recent advances in nanotechnology applied to biosensors. Sensors (Basel), 2009, 9(2), 1033-1053.
[http://dx.doi.org/10.3390/s90201033] [PMID: 22399954]
[122]
Lv, Y.; Xu, H.; Wu, R.; Xu, Y.; Li, N.; Li, J.; Shen, H.; Ma, H.; Guo, F.; Li, L.S. A quantum dot microspheres-based highly specific and sensitive three-dimensional microarray for multiplexed detection of inflammatory factors. Nanotechnology, 2021, 32(48), 485101.
[http://dx.doi.org/10.1088/1361-6528/ac1bdd] [PMID: 34371487]
[123]
Mansuriya, B.D.; Altintas, Z. Applications of graphene quantum dots in biomedical sensors. Sensors (Basel), 2020, 20(4), 1072.
[http://dx.doi.org/10.3390/s20041072] [PMID: 32079119]
[124]
Zheng, Y.; Wang, X.; He, S.; Gao, Z.; Di, Y.; Lu, K.; Li, K.; Wang, J. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry. Biosens. Bioelectron., 2019, 126, 261-268.
[http://dx.doi.org/10.1016/j.bios.2018.09.076] [PMID: 30445301]
[125]
Yang, W.; Xu, W.; Zhang, N.; Lai, X.; Peng, J.; Cao, Y.; Tu, J. TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose. J. Mater. Sci., 2020, 55(14), 6105-6117.
[http://dx.doi.org/10.1007/s10853-020-04422-y]
[126]
Shehab, M.; Ebrahim, S.; Soliman, M. Graphene quantum dots prepared from glucose as optical sensor for glucose. J. Lumin., 2017, 184, 110-116.
[http://dx.doi.org/10.1016/j.jlumin.2016.12.006]
[127]
Tian, K.; Nie, F.; Luo, K.; Zheng, X.; Zheng, J. A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. J. Electroanal. Chem. (Lausanne), 2017, 801, 162-170.
[http://dx.doi.org/10.1016/j.jelechem.2017.07.019]
[128]
Sadrolhosseini, A.R.; Abdul Rashid, S.; Jamaludin, N.; Noor, A.S.M.; Isloor, A.M. Surface plasmon resonance sensor using polypyrrole-chitosan/graphene quantum dots layer for detection of sugar. Mater. Res. Express, 2019, 6(7), 075028.
[http://dx.doi.org/10.1088/2053-1591/ab0b7a]
[129]
Tran, H.V.; Le, T.A.; Giang, B.L.; Piro, B.; Tran, L.D. Silver nanoparticles on graphene quantum dots as nanozyme for efficient H2O2 reduction in a glucose biosensor. Mater. Res. Express, 2019, 6(11), 115403.
[http://dx.doi.org/10.1088/2053-1591/ab46ca]
[130]
Abdelhamid, H.N.; Wu, H.F. Selective biosensing of Staphylococcus aureus using chitosan quantum dots. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 50-56.
[http://dx.doi.org/10.1016/j.saa.2017.06.047] [PMID: 28689078]
[131]
Hu, J.; Tang, F.; Jiang, Y.Z.; Liu, C. Rapid screening and quantitative detection of Salmonella using a quantum dot nanobead-based biosensor. Analyst (Lond.), 2020, 145(6), 2184-2190.
[http://dx.doi.org/10.1039/D0AN00035C] [PMID: 32101227]
[132]
Cui, J.; Zhou, M.; Li, Y.; Liang, Z.; Li, Y.; Yu, L.; Liu, Y.; Liang, Y.; Chen, L.; Yang, C. A new optical fiber probe-based quantum dots immunofluorescence biosensors in the detection of Staphylococcus aureus. Front. Cell. Infect. Microbiol., 2021, 11, 665241.
[http://dx.doi.org/10.3389/fcimb.2021.665241] [PMID: 34136417]
[133]
Kurt, H.; Yüce, M.; Hussain, B.; Budak, H. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens. Bioelectron., 2016, 81, 280-286.
[http://dx.doi.org/10.1016/j.bios.2016.03.005] [PMID: 26971274]
[134]
Łoczechin, A.; Séron, K.; Barras, A.; Giovanelli, E.; Belouzard, S.; Chen, Y.T.; Metzler-Nolte, N.; Boukherroub, R.; Dubuisson, J.; Szunerits, S. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl. Mater. Interfaces, 2019, 11(46), 42964-42974.
[http://dx.doi.org/10.1021/acsami.9b15032] [PMID: 31633330]
[135]
Ahmed, S.R.; Kang, S.W.; Oh, S.; Lee, J.; Neethirajan, S. Chiral zirconium quantum dots: A new class of nanocrystals for optical detection of coronavirus. Heliyon, 2018, 4(8), e00766.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00766] [PMID: 30186985]
[136]
Chen, R.; Kan, L.; Duan, F.; He, L.; Wang, M.; Cui, J.; Zhang, Z.; Zhang, Z. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Mikrochim. Acta, 2021, 188(10), 316.
[http://dx.doi.org/10.1007/s00604-021-04974-z] [PMID: 34476615]
[137]
Kour, R.; Arya, S.; Young, S-J.; Gupta, V.; Bandhoria, P.; Khosla, A. Review-recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc., 2020, 167(3), 037555.
[http://dx.doi.org/10.1149/1945-7111/ab6bc4]
[138]
Battigelli, A.; Ménard-Moyon, C.; Da Ros, T.; Prato, M.; Bianco, A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv. Drug Deliv. Rev., 2013, 65(15), 1899-1920.
[http://dx.doi.org/10.1016/j.addr.2013.07.006] [PMID: 23856410]
[139]
Janssen, J.; Lambeta, M.; White, P.; Byagowi, A. Carbon nanotube-based electrochemical biosensor for label-free protein detection. Biosensors (Basel), 2019, 9(4), 144.
[http://dx.doi.org/10.3390/bios9040144] [PMID: 31861101]
[140]
Divya, V.; Pavar, S.K.; Shilpa Chakra, C.; Rakesh Kumar, T.; Shireesha, K.; Madhuri, S. Applications of carbon-based nanomaterials in health and environment: biosensors, medicine and water treatment. Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology; Springer: Singapore, 2021, pp. 261-284.
[http://dx.doi.org/10.1007/978-981-16-1052-3_11]
[141]
Tran, T.T.; Clark, K.; Ma, W.; Mulchandani, A. Detection of a secreted protein biomarker for citrus Huanglongbing using a single-walled carbon nanotubes-based chemiresistive biosensor. Biosens. Bioelectron., 2020, 147, 111766.
[http://dx.doi.org/10.1016/j.bios.2019.111766] [PMID: 31654821]
[142]
Chen, H.; Huang, J.; Fam, D.W.H.; Tok, A.I.Y. Horizontally aligned carbon nanotube based biosensors for protein detection. Bioengineering (Basel), 2016, 3(4), 23.
[http://dx.doi.org/10.3390/bioengineering3040023] [PMID: 28952585]
[143]
Zhu, G.; Lee, H.J. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens. Bioelectron., 2017, 89(Pt 2), 959-963.
[http://dx.doi.org/10.1016/j.bios.2016.09.080] [PMID: 27816594]
[144]
Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A.M.; Nam, S.; Aluru, N.R.; Bashir, R. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun., 2020, 11(1), 1543.
[http://dx.doi.org/10.1038/s41467-020-15330-9] [PMID: 32210235]
[145]
Sobolewski, P.; Piwowarczyk, M.; Fray, M.E. Polymer-graphene nanocomposite materials for electrochemical biosensing. Macromol. Biosci., 2016, 16(7), 944-957.
[http://dx.doi.org/10.1002/mabi.201600081] [PMID: 27188816]
[146]
Amit Jadhav, S.; Biji, P.; Kumar Panthalingal, M.; Murali, C.; Kulkarni, A.; Rajkumar, S.; Joshi, D.S.; Natarajan, S. Development of integrated microfluidic platform coupled with surface-enhanced Raman spectroscopy for diagnosis of COVID-19. Med. Hypotheses, 2020, 146, 110356.
[http://dx.doi.org/10.1016/j.mehy.2020.110356]
[147]
Chen, M.; Hou, C.; Huo, D.; Fa, H.; Zhao, Y.; Shen, C. A sensitive electrochemical DNA biosensor based on three-dimensional nitrogen-doped graphene and Fe3O4 nanoparticles. Sens. Actuators B Chem., 2017, 239, 421-429.
[http://dx.doi.org/10.1016/j.snb.2016.08.036]
[148]
Başkaya, G.; Yıldız, Y.; Savk, A.; Okyay, T.O.; Eriş, S.; Sert, H.; Şen, F. Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron., 2017, 91, 728-733.
[http://dx.doi.org/10.1016/j.bios.2017.01.045] [PMID: 28129630]
[149]
Minitha, C.R.; Rajendra Kumar, R.T. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C, 2019, 105, 110075.
[http://dx.doi.org/10.1016/j.msec.2019.110075] [PMID: 31546385]
[150]
Comba, F.N.; Romero, M.R.; Garay, F.S.; Baruzzi, A.M. Mucin and carbon nanotube-based biosensor for detection of glucose in human plasma. Anal. Biochem., 2018, 550, 34-40.
[http://dx.doi.org/10.1016/j.ab.2018.04.006] [PMID: 29649474]
[151]
Zhu, T.; Zhang, Y.; Luo, L.; Zhao, X. Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection. ACS Appl. Mater. Interfaces, 2019, 11(11), 10856-10861.
[http://dx.doi.org/10.1021/acsami.9b00803] [PMID: 30802407]
[152]
Li, X.; Ren, K.; Zhang, M.; Sang, W.; Sun, D.; Hu, T.; Ni, Z. Cobalt functionalized MoS2/carbon nanotubes scaffold for enzyme-free glucose detection with extremely low detection limit. Sens. Actuators B Chem., 2019, 293, 122-128.
[http://dx.doi.org/10.1016/j.snb.2019.04.137]
[153]
Dinesh, B.; Shalini Devi, K.S.; Krishnan, U.M. Achieving a stable high surface excess of glucose oxidase on pristine multiwalled carbon nanotubes for glucose quantification. ACS Appl. Bio Mater., 2019, 2(4), 1740-1750.
[http://dx.doi.org/10.1021/acsabm.9b00145] [PMID: 35026909]
[154]
Rahsepar, M.; Foroughi, F.; Kim, H. A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value. Sens. Actuators B Chem., 2019, 282, 322-330.
[http://dx.doi.org/10.1016/j.snb.2018.11.078]
[155]
Luan, F.; Zhang, S.; Chen, D.; Wei, F.; Zhuang, X. Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose. Microchem. J., 2018, 143, 450-456.
[http://dx.doi.org/10.1016/j.microc.2018.08.046]
[156]
Salah, A.; Al-Ansi, N.; Adlat, S.; Bawa, M.; He, Y.; Bo, X.; Guo, L. Sensitive nonenzymatic detection of glucose at PtPd/porous holey nitrogen-doped graphene. J. Alloys Compd., 2019, 792, 50-58.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.021]
[157]
Vukojević, V.; Djurdjić, S.; Ognjanović, M.; Fabián, M.; Samphao, A.; Kalcher, K.; Stanković, D.M. Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. J. Electroanal. Chem. (Lausanne), 2018, 823, 610-616.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.013]
[158]
Hien, H.T.; Giang, H.T.; Trung, T.; Van Tuan, C. Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J. Mater. Sci., 2016, 52(3), 1694-1703.
[http://dx.doi.org/10.1007/s10853-016-0461-z]
[159]
Fu, Y.; Romay, V.; Liu, Y.; Ibarlucea, B.; Baraban, L.; Khavrus, V.; Oswald, S.; Bachmatiuk, A.; Ibrahim, I.; Rümmeli, M.; Gemming, T.; Bezugly, V.; Cuniberti, G. Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1. Sens. Actuators B Chem., 2017, 249, 691-699.
[http://dx.doi.org/10.1016/j.snb.2017.04.080]
[160]
Choi, H-K.; Lee, J.; Park, M-K.; Oh, J-H. Development of single-walled carbon nanotube-based biosensor for the detection of Staphylococcus aureus. J. Food Qual., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/5239487]
[161]
Pandey, A.; Gurbuz, Y.; Ozguz, V.; Niazi, J.H.; Qureshi, A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens. Bioelectron., 2017, 91, 225-231.
[http://dx.doi.org/10.1016/j.bios.2016.12.041] [PMID: 28012318]
[162]
Liu, M.; Zhang, Q.; Brennan, J.D.; Li, Y. Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Commun., 2018, 8(3), 687-694.
[http://dx.doi.org/10.1557/mrc.2018.97]
[163]
Mallakpour, S.; Azadi, E.; Hussain, C.M. Fight against COVID-19 pandemic with the help of carbon-based nanomaterials. New J. Chem., 2021, 45(20), 8832-8846.
[http://dx.doi.org/10.1039/D1NJ01333E]
[164]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 Causative Virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[165]
Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D.; Palleschi, G. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Anal. Chim. Acta, 2017, 959, 15-42.
[http://dx.doi.org/10.1016/j.aca.2016.12.035] [PMID: 28159104]
[166]
Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterials in electrochemical biosensors for pesticide detection: Advances and challenges in food analysis. Mikrochim. Acta, 2016, 183(7), 2063-2083.
[http://dx.doi.org/10.1007/s00604-016-1858-8]

© 2024 Bentham Science Publishers | Privacy Policy