Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Expression Profiles of Long Noncoding and Messenger RNAs in Epicardial Adipose Tissue-Derived from Patients with Coronary Atherosclerosis

Author(s): Yu Du, Yong Zhu, Yan Liu, Jinxing Liu, Chengping Hu, Yan Sun, Dai Zhang, Sai Lv, Yujing Cheng, Hongya Han, Jianwei Zhang, Yingxin Zhao and Yujie Zhou*

Volume 20, Issue 2, 2022

Published on: 14 January, 2022

Page: [189 - 200] Pages: 12

DOI: 10.2174/1570161120666220114095320

Price: $65

Abstract

Background: Given its close anatomical location to the heart and its endocrine properties, attention on epicardial adipose tissue (EAT) has increased.

Objective: This study investigated the expression profiles of long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in EAT derived from patients with coronary artery disease (CAD).

Methods: EAT samples from 8 CAD, and 8 non-CAD patients were obtained during open-heart surgery, respectively. The expression of lncRNAs and mRNAs in each EAT sample was investigated using microarray analysis and further verified using reverse transcription-quantitative polymerase chain reaction.

Results: Overall, 1,093 differentially expressed mRNAs and 2,282 differentially expressed lncRNAs were identified in EAT from CAD vs. non-CAD patients. Analysis using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes showed that these differentially expressed genes were mainly enriched in various inflammatory, immune, and metabolic processes. They were also involved in osteoclast differentiation, B cell receptor and adipocytokine signaling, and insulin resistance pathways. Additionally, lncRNA-mRNA and lncRNA-target pathway networks were built to identify potential core genes (e.g., Lnc-CCDC68-2:1, AC010148.1, NONHSAT104810) involved in atherosclerotic pathogenesis.

Conclusion: In summary, lncRNA and mRNA profiles in EAT were markedly different between CAD and non-CAD patients. Our study identifies several potential key genes and pathways that may participate in atherosclerosis development.

Keywords: Long noncoding RNA, messenger RNA, epicardial adipose tissue, coronary artery disease, atherosclerosis, microarray analysis.

« Previous
Graphical Abstract

[1]
Elliott J, Bodinier B, Bond TA, et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA 2020; 323(7): 636-45.
[http://dx.doi.org/10.1001/jama.2019.22241] [PMID: 32068818]
[2]
Rizzacasa B, Amati F, Romeo F, Novelli G, Mehta JL. Epigenetic modification in coronary atherosclerosis: JACC review topic of the week. J Am Coll Cardiol 2019; 74(10): 1352-65.
[http://dx.doi.org/10.1016/j.jacc.2019.07.043] [PMID: 31488273]
[3]
Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 2019; 234(10): 16812-23.
[http://dx.doi.org/10.1002/jcp.28350] [PMID: 30790284]
[4]
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising directions in atherosclerosis treatment based on epigenetic regulation using microRNAs and long noncoding RNAs. Biomolecules 2019; 9(6): 226.
[http://dx.doi.org/10.3390/biom9060226] [PMID: 31212708]
[5]
Zhang Y, Zhang L, Wang Y, et al. MicroRNAs or long noncoding RNAs in diagnosis and prognosis of coronary artery disease. Aging Dis 2019; 10(2): 353-66.
[http://dx.doi.org/10.14336/AD.2018.0617] [PMID: 31011482]
[6]
Li L, Wang L, Li H, et al. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 2018; 275: 359-67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.866] [PMID: 30015300]
[7]
Yang Y, Cai Y, Wu G, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond) 2015; 129(8): 675-85.
[http://dx.doi.org/10.1042/CS20150121] [PMID: 26201019]
[8]
Cai Y, Yang Y, Chen X, et al. Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 2016; 112(3): 714-24.
[http://dx.doi.org/10.1093/cvr/cvw022] [PMID: 26857419]
[9]
Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B 1989; 94(2): 225-32.
[http://dx.doi.org/10.1016/0305-0491(89)90337-4] [PMID: 2591189]
[10]
Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2005; 2(10): 536-43.
[http://dx.doi.org/10.1038/ncpcardio0319] [PMID: 16186852]
[11]
Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A. Role of epicardial adipose tissue in health and disease: a matter of fat? Compr Physiol 2017; 7(3): 1051-82.
[http://dx.doi.org/10.1002/cphy.c160034] [PMID: 28640452]
[12]
Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 2011; 22(11): 450-7.
[http://dx.doi.org/10.1016/j.tem.2011.07.003] [PMID: 21852149]
[13]
Yamawaki H. Vascular effects of novel adipocytokines: focus on vascular contractility and inflammatory responses. Biol Pharm Bull 2011; 34(3): 307-10.
[http://dx.doi.org/10.1248/bpb.34.307] [PMID: 21372376]
[14]
Ouwens DM, Sell H, Greulich S, Eckel J. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. J Cell Mol Med 2010; 14(9): 2223-34.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01141.x] [PMID: 20716126]
[15]
Mancio J, Azevedo D, Saraiva F, et al. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 2018; 19(5): 490-7.
[http://dx.doi.org/10.1093/ehjci/jex314] [PMID: 29236951]
[16]
Nerlekar N, Brown AJ, Muthalaly RG, et al. Association of epicardial adipose tissue and high-risk plaque characteristics: a systematic review and meta-analysis. J Am Heart Assoc 2017; 6(8): e006379.
[http://dx.doi.org/10.1161/JAHA.117.006379] [PMID: 28838916]
[17]
Sinha SK, Thakur R, Jha MJ, et al. Epicardial adipose tissue thickness and its association with the presence and severity of coronary artery disease in clinical setting: a cross-sectional observational study. J Clin Med Res 2016; 8(5): 410-9.
[http://dx.doi.org/10.14740/jocmr2468w] [PMID: 27081428]
[18]
Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the heinz nixdorf recall study. J Am Coll Cardiol 2013; 61(13): 1388-95.
[http://dx.doi.org/10.1016/j.jacc.2012.11.062] [PMID: 23433560]
[19]
Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev 2007; 8(3): 253-61.
[http://dx.doi.org/10.1111/j.1467-789X.2006.00293.x] [PMID: 17444966]
[20]
Madonna R, Massaro M, Scoditti E, Pescetelli I, De Caterina R. The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovasc Res 2019; 115(6): 1013-25.
[http://dx.doi.org/10.1093/cvr/cvz062] [PMID: 30903194]
[21]
Bornachea O, Vea A, Llorente-Cortes V. Interplay between epicardial adipose tissue, metabolic and cardiovascular diseases. Clin Investig Arterioscler 2018; 30(5): 230-9.
[PMID: 29903689]
[22]
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[23]
Sage AP, Tsiantoulas D, Binder CJ, Mallat Z. The role of B cells in atherosclerosis. Nat Rev Cardiol 2019; 16(3): 180-96.
[http://dx.doi.org/10.1038/s41569-018-0106-9] [PMID: 30410107]
[24]
Ma SD, Mussbacher M, Galkina EV. Functional role of b cells in atherosclerosis. Cells 2021; 10(2): 270.
[http://dx.doi.org/10.3390/cells10020270] [PMID: 33572939]
[25]
Caldeira D, Alves D, Costa J, Ferreira JJ, Pinto FJ. Ibrutinib increases the risk of hypertension and atrial fibrillation: systematic review and meta-analysis. PLoS One 2019; 14(2): e0211228.
[http://dx.doi.org/10.1371/journal.pone.0211228] [PMID: 30785921]
[26]
Fullerton MD, Steinberg GR, Schertzer JD. Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol Cell Endocrinol 2013; 366(2): 224-34.
[http://dx.doi.org/10.1016/j.mce.2012.02.004] [PMID: 22361321]
[27]
Greulich S, Maxhera B, Vandenplas G, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 2012; 126(19): 2324-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.039586] [PMID: 23065384]
[28]
Bis JC, White CC, Franceschini N, et al. Sequencing of 2 subclinical atherosclerosis candidate regions in 3669 individuals: cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium targeted sequencing study. Circ Cardiovasc Genet 2014; 7(3): 359-64.
[http://dx.doi.org/10.1161/CIRCGENETICS.113.000116] [PMID: 24951662]
[29]
Guo Y, Huang S, Ma Y, et al. MiR-377 mediates the expression of Syk to attenuate atherosclerosis lesion development in ApoE-/- mice. Biomed Pharmacother 2019; 118: 109332.
[http://dx.doi.org/10.1016/j.biopha.2019.109332] [PMID: 31545231]
[30]
Park K, Mima A, Li Q, et al. Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insight 2016; 1(6): e86574.
[http://dx.doi.org/10.1172/jci.insight.86574] [PMID: 27200419]
[31]
Vacca M, Di Eusanio M, Cariello M, et al. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc Res 2016; 109(2): 228-39.
[http://dx.doi.org/10.1093/cvr/cvv266] [PMID: 26645979]
[32]
Liu Y, Fu W, Lu M, Huai S, Song Y, Wei Y. Role of miRNAs in epicardial adipose tissue in CAD patients with T2DM. BioMed Res Int 2016; 2016: 1629236.
[http://dx.doi.org/10.1155/2016/1629236] [PMID: 27597954]
[33]
Li Y, Yan H, Guo J, et al. Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res 2021; 117(1): 240-55.
[http://dx.doi.org/10.1093/cvr/cvz268] [PMID: 31605122]
[34]
Mejhert N, Kuruvilla L, Gabriel KR, et al. Partitioning of MLX-Family transcription factors to lipid droplets regulates metabolic gene expression. Mol Cell 2020; 77(6): 1251-1264.e9.
[http://dx.doi.org/10.1016/j.molcel.2020.01.014] [PMID: 32023484]
[35]
Ketelhuth DFJ, Hansson GK. Adaptive response of T and B cells in atherosclerosis. Circ Res 2016; 118(4): 668-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306427] [PMID: 26892965]
[36]
Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 2015; 6(3): 209-17.
[http://dx.doi.org/10.4331/wjbc.v6.i3.209] [PMID: 26322175]
[37]
Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab 2011; 14(5): 575-85.
[http://dx.doi.org/10.1016/j.cmet.2011.07.015] [PMID: 22055501]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy