Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Potential Natural Compounds for the Prevention and Treatment of Nonalcoholic Fatty Liver Disease: A Review on Molecular Mechanisms

Author(s): Cheng Ma, Cheng Wang, Yafang Zhang, Honglin Zhou and Yunxia Li*

Volume 15, Issue 6, 2022

Published on: 01 March, 2022

Article ID: e171221199116 Pages: 16

DOI: 10.2174/1874467215666211217120448

Price: $65

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic stress-induced liver injury closely related to insulin resistance and genetic susceptibility, and there is no specific drug for its clinical treatment currently. In recent years, a large amount of literature has reported that many natural compounds extracted from traditional Chinese medicine (TCM) can improve NAFLD through various mechanisms. According to the latest reports, some emerging natural compounds have shown great potential to improve NAFLD but are seldom used clinically due to the lacking special research.

This paper aims to summarize the molecular mechanisms of the potential natural compounds on improving NAFLD, thus providing a direction and basis for further research on the pathogenesis of NAFLD and the development of effective drugs for the prevention and treatment of NAFLD.

By searching various online databases, such as Web of Science, SciFinder, PubMed, and CNKI, NAFLD and these natural compounds were used as the keywords for detailed literature retrieval.

The pathogenesis of NAFLD and the molecular mechanisms of the potential natural compounds on improving NAFLD have been reviewed.

Many natural compounds from traditional Chinese medicine have a good prospect in the treatment of NAFLD, which can serve as a direction for the development of anti-NAFLD drugs in the future.

Keywords: Nonalcoholic fatty liver disease, traditional chinese medicine, natural compounds, pathogenesis, “multiple hit” theory, molecular mechanisms.

Graphical Abstract

[1]
Younossi, Z.M. Non-alcoholic fatty liver disease - A global public health perspective. J. Hepatol., 2019, 70(3), 531-544.
[http://dx.doi.org/10.1016/j.jhep.2018.10.033] [PMID: 30414863]
[2]
Al-Dayyat, H.M.; Rayyan, Y.M.; Tayyem, R.F. Non-alcoholic fatty liver disease and associated dietary and lifestyle risk factors. Diabetes Metab. Syndr., 2018, 12(4), 569-575.
[http://dx.doi.org/10.1016/j.dsx.2018.03.016] [PMID: 29571977]
[3]
Sanyal, A.J.; Friedman, S.L.; McCullough, A.J.; Dimick-Santos, L. Challenges and opportunities in drug and biomarker development for nonalcoholic steatohepatitis: findings and recommendations from an American Association for the Study of Liver Diseases-U.S. Hepatology, 2015, 61(4), 1392-1405.
[http://dx.doi.org/10.1002/hep.27678] [PMID: 25557690]
[4]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[5]
Albhaisi, S.; Sanyal, A. Recent advances in understanding and managing non-alcoholic fatty liver disease. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.14421.1] [PMID: 29946426]
[6]
Goh, G.B.; McCullough, A.J. Natural history of nonalcoholic fatty liver disease. Dig. Dis. Sci., 2016, 61(5), 1226-1233.
[http://dx.doi.org/10.1007/s10620-016-4095-4] [PMID: 27003142]
[7]
Alexander, M.; Loomis, A.; van der Lei, J.; Duarte-Salles, T.; Prieto-Alhambra, D.; Ansell, D.; Pasqua, A.; Lapi, F.; Rijnbeek, P.; Mosseveld, M.; Avillach, P.; Egger, P.; Dhalwani, N.; Kendrick, S.; Celis-Morales, C.; Waterworth, D.; Alazawi, W.; Sattar, N. Non-alcoholic fatty liver disease and risk of incident acute myocardial infarction and stroke: Findings from matched cohort study of 18 million European adults. BMJ, 2019, 367l5367: 367.
[http://dx.doi.org/10.1136/bmj.l5367]
[8]
Moctezuma-Velázquez, C. Current treatment for non-alcoholic fatty liver disease. Rev. Gastroenterol. Mex., 2018, 83(2), 125-133. [Engl Ed].
[http://dx.doi.org/10.1016/j.rgmxen.2018.05.014] [PMID: 29655574]
[9]
Pastori, D.; Polimeni, L.; Baratta, F.; Pani, A.; Del Ben, M.; Angelico, F. The efficacy and safety of statins for the treatment of non-alcoholic fatty liver disease. Dig. Liver Dis., 2015, 47(1), 4-11.
[http://dx.doi.org/10.1016/j.dld.2014.07.170] [PMID: 25224698]
[10]
Lu, Z.; He, B.; Chen, Z.; Yan, M.; Wu, L. Anti-inflammatory activity of berberine in non-alcoholic fatty liver disease via the Angptl2 pathway. BMC Immunol., 2020, 21(1), 28.
[http://dx.doi.org/10.1186/s12865-020-00358-9] [PMID: 32429849]
[11]
Lee, D.E.; Lee, S.J.; Kim, S.J.; Lee, H.S.; Kwon, O.S. OCurcumin ameliorates nonalcoholic fatty liver disease through inhibition of -GlcNAcylation. Nutrients, 2019, 11(11), E2702.
[http://dx.doi.org/10.3390/nu11112702] [PMID: 31717261]
[12]
Huang, Y.; Lang, H.; Chen, K.; Zhang, Y.; Gao, Y.; Ran, L.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. Appl. Physiol. Nutr. Metab., 2020, 45(3), 227-239.
[http://dx.doi.org/10.1139/apnm-2019-0057] [PMID: 31173696]
[13]
Sahin, E.; Bagci, R.; Bektur Aykanat, N.E.; Kacar, S.; Sahinturk, V. Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice. J. Food Biochem., 2020, 44(6), e13194.
[http://dx.doi.org/10.1111/jfbc.13194] [PMID: 32189355]
[14]
Yan, T.; Yan, N.; Wang, P.; Xia, Y.; Hao, H.; Wang, G.; Gonzalez, F.J. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm. Sin. B, 2020, 10(1), 3-18.
[http://dx.doi.org/10.1016/j.apsb.2019.11.017] [PMID: 31993304]
[15]
Hou, Y.; Gu, D.; Peng, J.; Jiang, K.; Li, Z.; Shi, J.; Yang, S.; Li, S.; Fan, X. Ginsenoside Rg1 regulates liver lipid factor metabolism in nafld model rats. ACS Omega, 2020, 5(19), 10878-10890.
[http://dx.doi.org/10.1021/acsomega.0c00529] [PMID: 32455208]
[16]
Zhang, Q.; Tan, Y.; Zhang, N.; Yao, F. Polydatin supplementation ameliorates diet-induced development of insulin resistance and hepatic steatosis in rats. Mol. Med. Rep., 2015, 11(1), 603-610.
[http://dx.doi.org/10.3892/mmr.2014.2708] [PMID: 25333896]
[17]
Tian, X.; Ru, Q.; Xiong, Q.; Wen, R.; Chen, Y. Catalpol attenuates hepatic steatosis by regulating lipid metabolism via AMP-activated protein kinase activation. BioMed Res. Int., 2020, 2020, 6708061.
[http://dx.doi.org/10.1155/2020/6708061] [PMID: 32420361]
[18]
Shen, B.; Feng, H.; Cheng, J.; Li, Z.; Jin, M.; Zhao, L.; Wang, Q.; Qin, H.; Liu, G. Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways. J. Cell. Mol. Med., 2020, 24(9), 5097-5108.
[http://dx.doi.org/10.1111/jcmm.15139] [PMID: 32293113]
[19]
Day, C.P.; James, O.F. Steatohepatitis: a tale of two “hits”? Gastroenterology, 1998, 114(4), 842-845.
[http://dx.doi.org/10.1016/S0016-5085(98)70599-2] [PMID: 9547102]
[20]
Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016, 65(8), 1038-1048.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[21]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[22]
Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 2010, 52(5), 1836-1846.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[23]
Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol., 2019, 234(6), 8152-8161.
[http://dx.doi.org/10.1002/jcp.27603] [PMID: 30317615]
[24]
Kitade, H.; Chen, G.; Ni, Y.; Ota, T. Nonalcoholic fatty liver disease and insulin resistance: New insights and potential new treatments. Nutrients, 2017, 9(4), E387.
[http://dx.doi.org/10.3390/nu9040387] [PMID: 28420094]
[25]
Lomonaco, R.; Bril, F.; Portillo-Sanchez, P.; Ortiz-Lopez, C.; Orsak, B.; Biernacki, D.; Lo, M.; Suman, A.; Weber, M.H.; Cusi, K. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care, 2016, 39(4), 632-638.
[http://dx.doi.org/10.2337/dc15-1876] [PMID: 26861926]
[26]
Khan, R.S.; Bril, F.; Cusi, K.; Newsome, P.N. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology, 2019, 70(2), 711-724.
[http://dx.doi.org/10.1002/hep.30429] [PMID: 30556145]
[27]
Dowman, J.K.; Tomlinson, J.W.; Newsome, P.N. Pathogenesis of non-alcoholic fatty liver disease. QJM, 2010, 103(2), 71-83.
[http://dx.doi.org/10.1093/qjmed/hcp158] [PMID: 19914930]
[28]
Engin, A. Non-alcoholic fatty liver disease. Adv. Exp. Med. Biol., 2017, 960, 443-467.
[http://dx.doi.org/10.1007/978-3-319-48382-5_19] [PMID: 28585211]
[29]
Gastaldelli, A. Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clin. Sci. (Lond.), 2017, 131(22), 2701-2704.
[http://dx.doi.org/10.1042/CS20170987] [PMID: 29109303]
[30]
Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The liver as an endocrine organ-linking nafld and insulin resistance. Endocr. Rev., 2019, 40(5), 1367-1393.
[http://dx.doi.org/10.1210/er.2019-00034] [PMID: 31098621]
[31]
Takahashi, Y.; Sugimoto, K.; Inui, H.; Fukusato, T. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol., 2015, 21(13), 3777-3785.
[http://dx.doi.org/10.3748/wjg.v21.i13.3777] [PMID: 25852263]
[32]
Wang, Y.H.; Liu, Y.H.; He, G.R.; Lv, Y.; Du, G.H. Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2015, 15, 402.
[http://dx.doi.org/10.1186/s12906-015-0817-y] [PMID: 26552745]
[33]
Grattagliano, I.; de Bari, O.; Bernardo, T.C.; Oliveira, P.J.; Wang, D.Q.; Portincasa, P. Role of mitochondria in nonalcoholic fatty liver disease- from origin to propagation. Clin. Biochem., 2012, 45(9), 610-618.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.03.024] [PMID: 22484459]
[34]
Begriche, K.; Massart, J.; Robin, M.A.; Bonnet, F.; Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology, 2013, 58(4), 1497-1507.
[http://dx.doi.org/10.1002/hep.26226] [PMID: 23299992]
[35]
Satapati, S.; Kucejova, B.; Duarte, J.A.; Fletcher, J.A.; Reynolds, L.; Sunny, N.E.; He, T.; Nair, L.A.; Livingston, K.A.; Fu, X.; Merritt, M.E.; Sherry, A.D.; Malloy, C.R.; Shelton, J.M.; Lambert, J.; Parks, E.J.; Corbin, I.; Magnuson, M.A.; Browning, J.D.; Burgess, S.C.; Burgess, S. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Invest., 2015, 125(12), 4447-4462.
[http://dx.doi.org/10.1172/JCI82204] [PMID: 26571396]
[36]
Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2018, 2018, 9547613.
[http://dx.doi.org/10.1155/2018/9547613] [PMID: 29991976]
[37]
Lanthier, N. Targeting Kupffer cells in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Why and how? World J. Hepatol., 2015, 7(19), 2184-2188.
[http://dx.doi.org/10.4254/wjh.v7.i19.2184] [PMID: 26380042]
[38]
Duarte, N.; Coelho, I.C.; Patarrão, R.S.; Almeida, J.I.; Penha- Gonçalves, C.; Macedo, M.P. How Inflammation Impinges on NAFLD: A Role for Kupffer Cells. BioMed. Res. Int., 2015, 2015, 984578.
[http://dx.doi.org/10.1155/2015/984578] [PMID: 26090470]
[39]
Vonghia, L.; Francque, S. Cross talk of the immune system in the adipose tissue and the liver in non-alcoholic steatohepatitis: Pathology and beyond. World J. Hepatol., 2015, 7(15), 1905-1912.
[http://dx.doi.org/10.4254/wjh.v7.i15.1905] [PMID: 26244065]
[40]
Troisi, J.; Pierri, L.; Landolfi, A.; Marciano, F.; Bisogno, A.; Belmonte, F.; Palladino, C.; Guercio Nuzio, S.; Campiglia, P.; Vajro, P. Urinary metabolomics in pediatric obesity and nafld identifies metabolic pathways/metabolites related to dietary habits and gut-liver axis perturbations. Nutrients, 2017, 9(5), E485.
[http://dx.doi.org/10.3390/nu9050485] [PMID: 28492501]
[41]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Intestinal microbiota modulation in obesity-related non-alcoholic fatty liver disease. Front. Physiol., 2018, 9, 1813.
[http://dx.doi.org/10.3389/fphys.2018.01813] [PMID: 30618824]
[42]
Leung, C.; Rivera, L.; Furness, J.B.; Angus, P.W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(7), 412-425.
[http://dx.doi.org/10.1038/nrgastro.2016.85] [PMID: 27273168]
[43]
Ginès, P.; Kamath, P.S.; Arroyo, V. Chronic liver failure: Mechanisms and management springer. 2011.
[44]
Jiang, C.; Xie, C.; Li, F.; Zhang, L.; Nichols, R.G.; Krausz, K.W.; Cai, J.; Qi, Y.; Fang, Z.Z.; Takahashi, S.; Tanaka, N.; Desai, D.; Amin, S.G.; Albert, I.; Patterson, A.D.; Gonzalez, F.J. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest., 2015, 125(1), 386-402.
[http://dx.doi.org/10.1172/JCI76738] [PMID: 25500885]
[45]
Gonzalez, F.J.; Jiang, C.; Patterson, A.D. An intestinal microbiota-farnesoid x receptor axis modulates metabolic disease. Gastroenterology, 2016, 151(5), 845-859.
[http://dx.doi.org/10.1053/j.gastro.2016.08.057] [PMID: 27639801]
[46]
Safari, Z.; Gérard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell. Mol. Life Sci., 2019, 76(8), 1541-1558.
[http://dx.doi.org/10.1007/s00018-019-03011-w] [PMID: 30683985]
[47]
Lian, C.Y.; Zhai, Z.Z.; Li, Z.F.; Wang, L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact., 2020, 330, 109199.
[http://dx.doi.org/10.1016/j.cbi.2020.109199] [PMID: 32805210]
[48]
Cai, J.; Zhang, X.J.; Li, H. Role of innate immune signaling in non-alcoholic fatty liver disease. Trends Endocrinol. Metab., 2018, 29(10), 712-722.
[http://dx.doi.org/10.1016/j.tem.2018.08.003] [PMID: 30131212]
[49]
Arrese, M.; Cabrera, D.; Kalergis, A.M.; Feldstein, A.E. Innate immunity and inflammation in NAFLD/NASH. Dig. Dis. Sci., 2016, 61(5), 1294-1303.
[http://dx.doi.org/10.1007/s10620-016-4049-x] [PMID: 26841783]
[50]
Schuster, S.; Cabrera, D.; Arrese, M.; Feldstein, A.E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(6), 349-364.
[http://dx.doi.org/10.1038/s41575-018-0009-6] [PMID: 29740166]
[51]
Cai, J.; Zhang, X.J.; Li, H. The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology, 2019, 70(3), 1026-1037.
[http://dx.doi.org/10.1002/hep.30506] [PMID: 30653691]
[52]
Wenfeng, Z.; Yakun, W.; Di, M.; Jianping, G.; Chuanxin, W.; Chun, H. Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease. Ann. Hepatol., 2014, 13(5), 489-495.
[http://dx.doi.org/10.1016/S1665-2681(19)31247-5] [PMID: 25152980]
[53]
Zhu, S.; Zhang, H.; Bai, L. NKT cells in liver diseases. Front. Med., 2018, 12(3), 249-261.
[http://dx.doi.org/10.1007/s11684-018-0622-3] [PMID: 29623561]
[54]
Zheng, M.; Sun, H.; Tian, Z. Natural killer cells in liver diseases. Front. Med., 2018, 12(3), 269-279.
[http://dx.doi.org/10.1007/s11684-018-0621-4] [PMID: 29675689]
[55]
Sutti, S.; Albano, E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(2), 81-92.
[http://dx.doi.org/10.1038/s41575-019-0210-2] [PMID: 31605031]
[56]
Nati, M.; Haddad, D.; Birkenfeld, A.L.; Koch, C.A.; Chavakis, T.; Chatzigeorgiou, A. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev. Endocr. Metab. Disord., 2016, 17(1), 29-39.
[http://dx.doi.org/10.1007/s11154-016-9339-2] [PMID: 26847547]
[57]
Lee, J.; Kim, Y.; Friso, S.; Choi, S.W. Epigenetics in non-alcoholic fatty liver disease. Mol. Aspects Med., 2017, 54, 78-88.
[http://dx.doi.org/10.1016/j.mam.2016.11.008] [PMID: 27889327]
[58]
Zhang, L.; Lu, Q.; Chang, C. Epigenetics in Health and Disease. Adv. Exp. Med. Biol., 2020, 1253, 3-55.
[http://dx.doi.org/10.1007/978-981-15-3449-2_1] [PMID: 32445090]
[59]
Sodum, N.; Kumar, G.; Bojja, S.L.; Kumar, N.; Rao, C.M. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol. Res., 2021, 167, 105484.
[http://dx.doi.org/10.1016/j.phrs.2021.105484] [PMID: 33771699]
[60]
Choudhary, N.S.; Duseja, A. Genetic and epigenetic disease modifiers: non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Transl. Gastroenterol. Hepatol., 2021, 6, 2.
[http://dx.doi.org/10.21037/tgh.2019.09.06] [PMID: 33409397]
[61]
Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 3-11.
[http://dx.doi.org/10.1055/s-0034-1397344] [PMID: 25632930]
[62]
Baffy, G. MicroRNAs in nonalcoholic fatty liver disease. J. Clin. Med., 2015, 4(12), 1977-1988.
[http://dx.doi.org/10.3390/jcm4121953] [PMID: 26690233]
[63]
Afonso, M.B.; Rodrigues, P.M.; Simão, A.L.; Castro, R.E. Circulating micrornas as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J. Clin. Med., 2016, 5(3), E30.
[http://dx.doi.org/10.3390/jcm5030030] [PMID: 26950158]
[64]
Panera, N.; Gnani, D.; Crudele, A.; Ceccarelli, S.; Nobili, V.; Alisi, A. MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(41), 15079-15086.
[http://dx.doi.org/10.3748/wjg.v20.i41.15079] [PMID: 25386056]
[65]
Wu, W.K.K.; Zhang, L.; Chan, M.T.V. Autophagy, NAFLD and NAFLD-Related HCC. Adv. Exp. Med. Biol., 2018, 1061, 127-138.
[http://dx.doi.org/10.1007/978-981-10-8684-7_10] [PMID: 29956211]
[66]
Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol., 2018, 69(4), 927-947.
[http://dx.doi.org/10.1016/j.jhep.2018.06.008] [PMID: 29940269]
[67]
Datz, C.; Müller, E.; Aigner, E. Iron overload and non-alcoholic fatty liver disease. Minerva Endocrinol., 2017, 42(2), 173-183.
[PMID: 27834478]
[68]
Zhang, Z.; Thorne, J.L.; Moore, J.B. Vitamin D and nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care, 2019, 22(6), 449-458.
[http://dx.doi.org/10.1097/MCO.0000000000000605] [PMID: 31589177]
[69]
Gao, Y.; Chu, S.; Zhang, Z.; Chen, N. Hepataprotective effects of ginsenoside Rg1 - A review. J. Ethnopharmacol., 2017, 206, 178-183.
[http://dx.doi.org/10.1016/j.jep.2017.04.012] [PMID: 28427912]
[70]
Xu, Y.; Yang, C.; Zhang, S.; Li, J.; Xiao, Q.; Huang, W. Ginsenoside rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol. Pharm. Bull., 2018, 41(11), 1638-1644.
[http://dx.doi.org/10.1248/bpb.b18-00132] [PMID: 30135326]
[71]
Fan, X.; Zhang, C.; Niu, S.; Fan, B.; Gu, D.; Jiang, K.; Li, R.; Li, S. Ginsenoside Rg1 attenuates hepatic insulin resistance induced by high-fat and high-sugar by inhibiting inflammation. Eur. J. Pharmacol., 2019, 854, 247-255.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.027] [PMID: 31002778]
[72]
Xiao, Q.; Zhang, S.; Yang, C.; Du, R.; Zhao, J.; Li, J.; Xu, Y.; Qin, Y.; Gao, Y.; Huang, W. κGinsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in hepg2 cells via the ampk/nf-b pathway. Int. J. Endocrinol., 2019, 7514802.
[73]
Wang, Q.L.; Yang, L.; Peng, Y.; Gao, M.; Yang, M.S.; Xing, W.; Xiao, X.Z. Ginsenoside Rg1 regulates sirt1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediators Inflamm., 2019, 2019, 6453296.
[http://dx.doi.org/10.1155/2019/6453296] [PMID: 30918470]
[74]
Gao, Y.; Chu, S.F.; Xia, C.Y.; Zhang, Z.; Zhang, S.; Chen, N.H. Rg1 Attenuates alcoholic hepatic damage through regulating AMP-activated protein kinase and nuclear factor erythroid 2-related factor 2 signal pathways. J. Asian Nat. Prod. Res., 2016, 18(8), 765-778.
[http://dx.doi.org/10.1080/10286020.2016.1162787] [PMID: 27229011]
[75]
Gao, Y.; Chu, S.; Li, J.; Li, J.; Zhang, Z.; Xia, C.; Heng, Y.; Zhang, M.; Hu, J.; Wei, G.; Li, Y.; Chen, N. Anti-inflammatory function of ginsenoside Rg1 on alcoholic hepatitis through glucocorticoid receptor related nuclear factor-kappa B pathway. J. Ethnopharmacol., 2015, 173, 231-240.
[http://dx.doi.org/10.1016/j.jep.2015.07.020] [PMID: 26196399]
[76]
Chiang, H.M.; Chen, H.C.; Wu, C.S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. J. Food Drug Anal., 2015, 23(3), 359-369.
[http://dx.doi.org/10.1016/j.jfda.2015.04.007] [PMID: 28911692]
[77]
Li, H.; Ying, H.; Hu, A.; Li, D.; Hu, Y. Salidroside modulates insulin signaling in a rat model of nonalcoholic steatohepatitis. Evid. Based Complement. Alternat. Med., 2017, 2017, 9651371.
[http://dx.doi.org/10.1155/2017/9651371] [PMID: 28255329]
[78]
Zheng, T.; Yang, X.; Wu, D.; Xing, S.; Bian, F.; Li, W.; Chi, J.; Bai, X.; Wu, G.; Chen, X.; Zhang, Y.; Jin, S. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br. J. Pharmacol., 2015, 172(13), 3284-3301.
[http://dx.doi.org/10.1111/bph.13120] [PMID: 25754463]
[79]
Yang, Z.R.; Wang, H.F.; Zuo, T.C.; Guan, L.L.; Dai, N. Salidroside alleviates oxidative stress in the liver with non- alcoholic steatohepatitis in rats. BMC Pharmacol. Toxicol., 2016, 17, 16.
[http://dx.doi.org/10.1186/s40360-016-0059-8] [PMID: 27075663]
[80]
Li, H.; Xi, Y.; Xin, X.; Tian, H.; Hu, Y. Salidroside improves high-fat diet-induced non-alcoholic steatohepatitis by regulating the gut microbiota-bile acid-farnesoid X receptor axis. Biomed. Pharmacother., 2020, 124, 109915.
[http://dx.doi.org/10.1016/j.biopha.2020.109915] [PMID: 31986416]
[81]
Zheng, T.; Yang, X.; Li, W.; Wang, Q.; Chen, L.; Wu, D.; Bian, F.; Xing, S.; Jin, S. Salidroside attenuates high-fat diet-induced nonalcoholic fatty liver disease via AMPK-dependent TXNIP/NLRP3 pathway. Oxid. Med. Cell. Longev., 2018, 2018, 8597897.
[http://dx.doi.org/10.1155/2018/8597897] [PMID: 30140371]
[82]
Yamamoto, S.; Shimizu, S. Significance of TRP channels in oxidative stress. Eur. J. Pharmacol., 2016, 793, 109-111.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.007] [PMID: 27838397]
[83]
Feng, Q.; Liu, C.; Gao, W.; Geng, X.L.; Dai, N. Salidroside-mitigated inflammatory injury of hepatocytes with non-alcoholic fatty liver disease via inhibition TRPM2 ion channel activation. Diabetes Metab. Syndr. Obes., 2019, 12, 2755-2763.
[http://dx.doi.org/10.2147/DMSO.S210764] [PMID: 31920355]
[84]
Feng, J.; Chen, K.; Xia, Y.; Wu, L.; Li, J.; Li, S.; Wang, W.; Lu, X.; Liu, T.; Guo, C. Salidroside ameliorates autophagy and activation of hepatic stellate cells in mice via NF-κB and TGF-β1/Smad3 pathways. Drug Des. Devel. Ther., 2018, 121837-121853.
[85]
Gugliandolo, E.; Fusco, R.; Biundo, F.; D’Amico, R.; Benedetto, F.; Di Paola, R.; Cuzzocrea, S. Palmitoylethanolamide and Polydatin combination reduces inflammation and oxidative stress in vascular injury. Pharmacol. Res., 2017, 123, 83-92.
[http://dx.doi.org/10.1016/j.phrs.2017.06.014] [PMID: 28676456]
[86]
Huang, K.; Chen, C.; Hao, J.; Huang, J.; Wang, S.; Liu, P.; Huang, H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol. Cell. Endocrinol., 2015, 399, 178-189.
[http://dx.doi.org/10.1016/j.mce.2014.08.014] [PMID: 25192797]
[87]
Tang, S.; Tang, Q.; Jin, J.; Zheng, G.; Xu, J.; Huang, W.; Li, X.; Shang, P.; Liu, H. Polydatin inhibits the IL-1β-induced inflammatory response in human osteoarthritic chondrocytes by activating the Nrf2 signaling pathway and ameliorates murine osteoarthritis. Food Funct., 2018, 9(3), 1701-1712.
[http://dx.doi.org/10.1039/C7FO01555K] [PMID: 29484338]
[88]
Li, R.; Li, J.; Huang, Y.; Li, H.; Yan, S.; Lin, J.; Chen, Y.; Wu, L.; Liu, B.; Wang, G.; Lan, T. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int. J. Biol. Sci., 2018, 14(11), 1411-1425.
[http://dx.doi.org/10.7150/ijbs.26086] [PMID: 30262993]
[89]
Koneru, M.; Sahu, B.D.; Gudem, S.; Kuncha, M.; Ravuri, H.G.; Kumar, J.M.; Kilari, E.K.; Sistla, R. Polydatin alleviates alcohol-induced acute liver injury in mice: Relevance of matrix metalloproteinases (MMPs) and hepatic antioxidants. Phytomedicine, 2017, 27, 23-32.
[http://dx.doi.org/10.1016/j.phymed.2017.01.013] [PMID: 28314476]
[90]
Chen, X.; Chan, H.; Zhang, L.; Liu, X.; Ho, I.H.T.; Zhang, X.; Ho, J.; Hu, W.; Tian, Y.; Kou, S.; Chan, C.S.; Yu, J.; Wong, S.H.; Gin, T.; Chan, M.T.V.; Sun, X.; Wu, W.K.K. The phytochemical polydatin ameliorates non-alcoholic steatohepatitis by restoring lysosomal function and autophagic flux. J. Cell. Mol. Med., 2019, 23(6), 4290-4300.
[http://dx.doi.org/10.1111/jcmm.14320] [PMID: 30973211]
[91]
Yang, L.; Ren, S.; Xu, F.; Ma, Z.; Liu, X.; Wang, L. Recent advances in the pharmacological activities of dioscin. BioMed Res. Int., 2019, 2019, 5763602.
[http://dx.doi.org/10.1155/2019/5763602] [PMID: 31511824]
[92]
Tao, X.; Yin, L.; Xu, L.; Peng, J. Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol. Res., 2018, 137, 259-269.
[http://dx.doi.org/10.1016/j.phrs.2018.09.022] [PMID: 30315966]
[93]
Liu, M.; Xu, L.; Yin, L.; Qi, Y.; Xu, Y.; Han, X.; Zhao, Y.; Sun, H.; Yao, J.; Lin, Y.; Liu, K.; Peng, J. Potent effects of dioscin against obesity in mice. Sci. Rep., 2015, 5, 7973.
[http://dx.doi.org/10.1038/srep07973] [PMID: 25609476]
[94]
Yao, H.; Tao, X.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Xu, Y.; Zheng, L.; Peng, J. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacol. Res., 2018, 131, 51-60.
[http://dx.doi.org/10.1016/j.phrs.2018.03.017] [PMID: 29574225]
[95]
Liu, M.; Xu, Y.; Han, X.; Yin, L.; Xu, L.; Qi, Y.; Zhao, Y.; Liu, K.; Peng, J. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Sci. Rep., 2015, 518038.
[96]
Cheng, S.; Liang, S.; Liu, Q.; Deng, Z.; Zhang, Y.; Du, J.; Zhang, Y.; Li, S.; Cheng, B.; Ling, C. Diosgenin prevents high-fat diet-induced rat non-alcoholic fatty liver disease through the AMPK and LXR signaling pathways. Int. J. Mol. Med., 2018, 41(2), 1089-1095.
[PMID: 29207101]
[97]
Jiang, B.; Shen, R.F.; Bi, J.; Tian, X.S.; Hinchliffe, T.; Xia, Y. Catalpol: a potential therapeutic for neurodegenerative diseases. Curr. Med. Chem., 2015, 22(10), 1278-1291.
[http://dx.doi.org/10.2174/0929867322666150114151720] [PMID: 25620103]
[98]
Li, X.; Xu, Z.; Jiang, Z.; Sun, L.; Ji, J.; Miao, J.; Zhang, X.; Li, X.; Huang, S.; Wang, T.; Zhang, L. Hypoglycemic effect of catalpol on high-fat diet/streptozotocin-induced diabetic mice by increasing skeletal muscle mitochondrial biogenesis. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(9), 738-748.
[http://dx.doi.org/10.1093/abbs/gmu065] [PMID: 25178463]
[99]
Zhou, J.; Xu, G.; Ma, S.; Li, F.; Yuan, M.; Xu, H.; Huang, K. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways. Biochem. Biophys. Res. Commun., 2015, 467(4), 853-858.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.054] [PMID: 26474703]
[100]
Ren, H.; Wang, D.; Zhang, L.; Kang, X.; Li, Y.; Zhou, X.; Yuan, G. Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice. Aging (Albany NY), 2019, 11(21), 9461-9477.
[http://dx.doi.org/10.18632/aging.102396] [PMID: 31697646]
[101]
Zhang, Y.; Wang, C.; Lu, J.; Jin, Y.; Xu, C.; Meng, Q.; Liu, Q.; Dong, D.; Ma, X.; Liu, K.; Sun, H. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging (Albany NY), 2020, 12(3), 2049-2069.
[http://dx.doi.org/10.18632/aging.102721] [PMID: 32023549]
[102]
Zhou, Y.X.; Zhang, R.Q.; Rahman, K.; Cao, Z.X.; Zhang, H.; Peng, C. Diverse pharmacological activities and potential medicinal benefits of geniposide. Evid. Based Complement. Alternat. Med., 2019, 2019, 4925682.
[http://dx.doi.org/10.1155/2019/4925682] [PMID: 31118959]
[103]
Ling-xia, X.; Zhen-ying, G.; Zhi-jia, Z.; Hui-qing, L.; Shi-lin, X.; Xin-yue, L.; Yu-chang, C.; Zi-lu, J.; Gao-xuan, S.; Peng-hua, L.; Shao-liang, Z.; Xiao-ying, L.; Shao-dong, C. Effect of geniposide on nonalcoholic steatohepatitis rats based on gut-liver axis. Chin. J. Integr. Tradi. Western Med., 2019, 39(10), 1240-1244.
[104]
Feng, Q.; Liu, W.; Baker, S.S.; Li, H.; Chen, C.; Liu, Q.; Tang, S.; Guan, L.; Tsompana, M.; Kozielski, R.; Baker, R.D.; Peng, J.; Liu, P.; Zhu, R.; Hu, Y.; Zhu, L. Multi-targeting therapeutic mechanisms of the Chinese herbal medicine QHD in the treatment of non-alcoholic fatty liver disease. Oncotarget, 2017, 8(17), 27820-27838.
[http://dx.doi.org/10.18632/oncotarget.15482] [PMID: 28416740]
[105]
Peng, J.H.; Leng, J.; Tian, H.J.; Yang, T.; Fang, Y.; Feng, Q.; Zhao, Y.; Hu, Y.Y. Geniposide and chlorogenic acid combination ameliorates non-alcoholic steatohepatitis involving the protection on the gut barrier function in mouse induced by high-fat diet. Front. Pharmacol., 2018, 9, 1399.
[http://dx.doi.org/10.3389/fphar.2018.01399] [PMID: 30618733]
[106]
Meng, S.X.; Liu, Q.; Tang, Y.J.; Wang, W.J.; Zheng, Q.S.; Tian, H.J.; Yao, D.S.; Liu, L.; Peng, J.H.; Zhao, Y.; Hu, Y.Y.; Feng, Q. A recipe composed of chinese herbal active components regulates hepatic lipid metabolism of NAFLD in vivo and in vitro. BioMed Res. Int., 2016, 2016, 1026852.
[http://dx.doi.org/10.1155/2016/1026852] [PMID: 27069915]
[107]
Liu, F.Y.; Wen, J.; Hou, J.; Zhang, S.Q.; Sun, C.B.; Zhou, L.C.; Yin, W.; Pang, W.L.; Wang, C.; Ying, Y.; Han, S.S.; Yan, J.Y.; Li, C.X.; Yuan, J.L.; Xing, H.J.; Yang, Z.S. Gastrodia remodels intestinal microflora to suppress inflammation in mice with early atherosclerosis. Int. Immunopharmacol., 2021, 96, 107758.
[http://dx.doi.org/10.1016/j.intimp.2021.107758] [PMID: 34162137]
[108]
Liu, Y.; Gao, J.; Peng, M.; Meng, H.; Ma, H.; Cai, P.; Xu, Y.; Zhao, Q.; Si, G. A review on central nervous system effects of gastrodin. Front. Pharmacol., 2018, 9, 24.
[http://dx.doi.org/10.3389/fphar.2018.00024] [PMID: 29456504]
[109]
Yana, G.; Bin, Y.U.; Zengyan, Z.; Weijia, K. Experimental study of Gastrodia Powder in improving hepatic steatosis in rats intragastrically administered with fat emulsion. China Medical Her., 2013, 10, 11-5.
[110]
Ya-na, G.; Bin, Y.; Wei-jia, K. Gastrodin ameliorates oleic acid-induced fat accumulation through activation of AMPK pathway in HL-7702 cells. Zhongguo Yaolixue Tongbao, 2015, 31, 39-44.
[111]
Ahmad, O.; Wang, B.; Ma, K.; Deng, Y.; Li, M.; Yang, L.; Yang, Y.; Zhao, J.; Cheng, L.; Zhou, Q.; Shang, J. Lipid modulating anti-oxidant stress activity of gastrodin on nonalcoholic fatty liver disease larval zebrafish model. Int. J. Mol. Sci., 2019, 20(8), E1984.
[http://dx.doi.org/10.3390/ijms20081984] [PMID: 31018538]
[112]
Qu, L.L.; Yu, B.; Li, Z.; Jiang, W.X.; Jiang, J.D.; Kong, W.J. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother. Res., 2016, 30(3), 402-411.
[http://dx.doi.org/10.1002/ptr.5541] [PMID: 26634892]
[113]
Zhao, X.; Gong, L.; Wang, C.; Liu, M.; Hu, N.; Dai, X.; Peng, C.; Li, Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. J. Ethnopharmacol., 2021, 268, 113569.
[http://dx.doi.org/10.1016/j.jep.2020.113569] [PMID: 33186701]
[114]
Wang, C.; Hu, N.; Yu, L.; Gong, L.; Dai, X.; Peng, C.; Li, Y. 2,3,5,4′-tetrahydroxystilbence-2-O-β-D-glucoside attenuates hepatic steatosis via IKKβ/NF-κB and Keap1-Nrf2 pathways in larval zebrafish. Biomed. Pharmacother., 2020, 127, 110138.
[http://dx.doi.org/10.1016/j.biopha.2020.110138]
[115]
Shahbazi, R.; Cheraghpour, M.; Homayounfar, R.; Nazari, M.; Nasrollahzadeh, J.; Davoodi, S.H. Hesperidin inhibits insulin-induced phosphoinositide 3-kinase/Akt activation in human pre-B cell line NALM-6. J. Cancer Res. Ther., 2018, 14(3), 503-508.
[http://dx.doi.org/10.4103/0973-1482.157323] [PMID: 29893306]
[116]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol., 2017, 42(2), 92-108.
[http://dx.doi.org/10.23736/S0391-1977.16.02563-3] [PMID: 27711029]
[117]
Rehman, K.; Munawar, S.M.; Akash, M.S.H.; Buabeid, M.A.; Chohan, T.A.; Tariq, M.; Jabeen, K.; Arafa, E.A. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS One, 2020, 15(1), e0227637.
[http://dx.doi.org/10.1371/journal.pone.0227637] [PMID: 31929574]
[118]
Cheraghpour, M.; Imani, H.; Ommi, S.; Alavian, S.M.; Karimi-Shahrbabak, E.; Hedayati, M.; Yari, Z.; Hekmatdoost, A. Hesperidin improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: A randomized, placebo-controlled, double-blind clinical trial. Phytother. Res., 2019, 33(8), 2118-2125.
[http://dx.doi.org/10.1002/ptr.6406] [PMID: 31264313]
[119]
Yari, Z.; Movahedian, M.; Imani, H.; Alavian, S.M.; Hedayati, M.; Hekmatdoost, A. The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Eur. J. Nutr., 2020, 59(6), 2569-2577.
[http://dx.doi.org/10.1007/s00394-019-02105-2] [PMID: 31844967]
[120]
Su, S.; Wu, J.; Gao, Y.; Luo, Y.; Yang, D.; Wang, P. The pharmacological properties of chrysophanol, the recent advances. Biomed. Pharmacother., 2020, 125, 110002.
[http://dx.doi.org/10.1016/j.biopha.2020.110002] [PMID: 32066044]
[121]
Chrysophanol: A natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules, 2019, 9(2), 68.
[http://dx.doi.org/10.3390/biom9020068]
[122]
Xie, L.; Tang, H.; Song, J.; Long, J.; Zhang, L.; Li, X. Chrysophanol: a review of its pharmacology, toxicity and pharmacokinetics. J. Pharm. Pharmacol., 2019, 71(10), 1475-1487.
[http://dx.doi.org/10.1111/jphp.13143] [PMID: 31373015]
[123]
Chen, K.; Wang, C.Q.; Fan, Y.Q.; Xie, Y.S.; Yin, Z.F.; Xu, Z.J.; Zhang, H.L.; Cao, J.T.; Wang, Y. Application of chrysophanol in zebrafish to reduce dietary introduced lipid and its possible mechanism. Int. J. Clin. Exp. Med., 2015, 8(7), 10558-10567.
[PMID: 26379845]
[124]
Yunzhi, H.; Junmin, L.; Zhizhong, L. Wei2, L.; Fuguo, J.; Jing, G. The effect of chrysophanol on high fat diet-induced non-alcoholic fatty liver disease in neonatal rats. Immunol. J., 2018, 34(10), 869-874.
[125]
Zheng, L.; Yang, L.; Wang, Z.; Chen, C.; Su, Y. Protective effect of Esculin in adjuvant-induced arthritic (AIA) rats via attenuating pro-inflammatory cytokines and oxidative stress. Cell. Mol. Biol., 2015, 61(7), 1-5.
[PMID: 26567597]
[126]
Liu, A.; Shen, Y.; Du, Y.; Chen, J.; Pei, F.; Fu, W.; Qiao, J. Esculin prevents Lipopolysaccharide/D-Galactosamine-induced acute liver injury in mice. Microb. Pathog., 2018, 125, 418-422.
[http://dx.doi.org/10.1016/j.micpath.2018.10.003] [PMID: 30290266]
[127]
Hong, H.; Rong, L. Protective effect of esculin on high fatty diet-induced nonalcoholic fatty liver disease. Central South Pharmacy, 2019, 17(10), 1651-1654.
[128]
Qi, R.; Jiang, R.; Xiao, H.; Wang, Z.; He, S.; Wang, L.; Wang, Y. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. Life Sci., 2020, 254, 117: 776.
[http://dx.doi.org/10.1016/j.lfs.2020.117776] [PMID: 32437790]
[129]
Mo, J.; Zhou, Y.; Yang, R.; Zhang, P.; He, B.; Yang, J.; Li, S.; Shen, Z.; Chen, P. Ginsenoside Rg1 ameliorates palmitic acid-induced insulin resistance in HepG2 cells in association with modulating Akt and JNK activity. Pharmacol. Rep., 2019, 71(6), 1160-1167.
[http://dx.doi.org/10.1016/j.pharep.2019.07.004] [PMID: 31675670]
[130]
Liu, H.; Wang, J.; Liu, M.; Zhao, H.; Yaqoob, S.; Zheng, M.; Cai, D.; Liu, J. Antiobesity effects of ginsenoside Rg1 on 3T3-L1 preadipocytes and high fat diet-induced obese mice mediated by AMPK. Nutrients, 2018, 10(7), E830.
[http://dx.doi.org/10.3390/nu10070830] [PMID: 29954059]
[131]
Mosqueda-Solís, A.; Sánchez, J.; Reynés, B.; Palou, M.; Portillo, M.P.; Palou, A.; Picó, C. Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. Sci. Rep., 2018, 8(1), 15100.
[http://dx.doi.org/10.1038/s41598-018-32875-4] [PMID: 30305645]
[132]
Zhang, J.; Kang, H.; Wang, L.; Zhao, X. Chrysophanol ameliorates high-fat diet-induced obesity and inflammation in neonatal rats. Pharmazie, 2018, 73(4), 228-233.
[PMID: 29609691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy