Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Artificial Intelligence (AI) in Drugs and Pharmaceuticals

Author(s): Adarsh Sahu*, Jyotika Mishra and Namrata Kushwaha

Volume 25, Issue 11, 2022

Published on: 14 January, 2022

Page: [1818 - 1837] Pages: 20

DOI: 10.2174/1386207325666211207153943

Price: $65

Abstract

The advancement of computing and technology has invaded all the dimensions of science. Artificial intelligence (AI) is one core branch of Computer Science, which has percolated to all the arenas of science and technology, from core engineering to medicines. Thus, AI has found its way for application in the field of medicinal chemistry and heath care. The conventional methods of drug design have been replaced by computer-aided designs of drugs in recent times. AI is being used extensively to improve the design techniques and required time of the drugs. Additionally, the target proteins can be conveniently identified using AI, which enhances the success rate of the designed drug. The AI technology is used in each step of the drug designing procedure, which decreases the health hazards related to preclinical trials and also reduces the cost substantially. The AI is an effective tool for data mining based on the huge pharmacological data and machine learning process. Hence, AI has been used in de novo drug design, activity scoring, virtual screening and in silico evaluation in the properties (absorption, distribution, metabolism, excretion and toxicity) of a drug molecule. Various pharmaceutical companies have teamed up with AI companies for faster progress in the field of drug development, along with the healthcare system. The review covers various aspects of AI (Machine learning, Deep learning, Artificial neural networks) in drug design. It also provides a brief overview of the recent progress by the pharmaceutical companies in drug discovery by associating with different AI companies.

Keywords: Deep learning, machine learning, artificial neural network, drug design, drug discovery, pharmaceuticals.

[1]
Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov., 2005, 4(8), 649-663.
[http://dx.doi.org/10.1038/nrd1799] [PMID: 16056391]
[2]
Schneider, G.; Clark, D.E. Automated Automated de novo drug design: Are we nearly there yet drug design: Are we nearly there yet? Angew. Chem. Int. Ed. Engl., 2019, 58(32), 10792-10803.
[http://dx.doi.org/10.1002/anie.201814681] [PMID: 30730601]
[3]
Schneider, G.; Geppert, T.; Hartenfeller, M.; Reisen, F.; Klenner, A.; Reutlinger, M.; Hähnke, V.; Hiss, J.A.; Zettl, H.; Keppner, S.; Spänkuch, B.; Schneider, P. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med. Chem., 2011, 3(4), 415-424.
[http://dx.doi.org/10.4155/fmc.11.8] [PMID: 21452978]
[4]
McCarthy, J.; Hayesm, P.J. Some Philosophical Problems from Standpoint of Artificial Intelligence.Machine Intelligence; Edinburgh University Press: Edinburgh, 1969, pp. 463-502.
[5]
Qian, N.; Sejnowski, T.J. Predicting the secondary structure of globular proteins using neural net-work models. J. Mol. Biol., 1988, 202(4), 865-884.
[http://dx.doi.org/10.1016/0022-2836(88)90564-5] [PMID: 3172241]
[6]
Hammett, L.P. The effect of structure upon the reactions of organic compounds. Temperature and solvent influences. J. Chem. Phys., 1936, 4, 613-617.
[http://dx.doi.org/10.1063/1.1749914]
[7]
Hansch, C. Fujita, T. ρ-σ-π Analysis. A method for the correlation of biological activity and chemi-cal structure. J. Am. Chem. Soc., 1964, 86, 5710.
[http://dx.doi.org/10.1021/ja01078a623]
[8]
Radchenko, E.V.; Dyabina, A.S.; Palyulin, V.A.; Zefirov, N.S. Prediction of human intestinal ab-sorption of drug compounds. Russ. Chem. Bull., 2016, 65, 576-580.
[http://dx.doi.org/10.1007/s11172-016-1340-0]
[9]
Jayaram, H.N.; Gharehbaghi, K.; Jayaram, N.H.; Rieser, J.; Krohn, K.; Paull, K.D. Cytotoxicity of a new IMP dehydrogenase inhibitor, benzamide riboside, to human myelogenous leukemia K562 cells. Biochem. Biophys. Res. Commun., 1992, 186(3), 1600-1606.
[http://dx.doi.org/10.1016/S0006-291X(05)81591-8] [PMID: 1354960]
[10]
Martin, Y.C.; Holland, J.B.; Jarboe, C.H.; Plotnikoff, N. Discriminant analysis of the relationship between physical properties and the inhi-bition of monoamine oxidase by aminotetralins and aminoindans. J. Med. Chem., 1974, 17(4), 409-413.
[http://dx.doi.org/10.1021/jm00250a008] [PMID: 4830537]
[11]
Kneller, D.G.; Cohen, F.E.; Langridge, R. Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol., 1990, 214(1), 171-182.
[http://dx.doi.org/10.1016/0022-2836(90)90154-E] [PMID: 2370661]
[12]
Weinstein, J.N.; Kohn, K.W.; Grever, M.R.; Viswanadhan, V.N.; Rubinstein, L.V.; Monks, A.P.; Scudiero, D.A.; Welch, L.; Koutsoukos, A.D.; Chiausa, A.J.; Paull, K.D. Neural computing in cancer drug development: Predicting mechanism of action. Science, 1992, 258, 447-451.
[13]
Schneider, G. Generative models for artificially-intelligent molecular design. Mol. Inform., 2018, 37(1-2), 1880131.
[http://dx.doi.org/10.1002/minf.201880131] [PMID: 29442446]
[14]
Ho, T.K. Random decision forests.Proc. Int. Conf. Doc. Anal. Recognition, ICDAR; , 1995, pp. 278-282.
[15]
Guenther, N.M.S. Support Vector Machines (SVM) Support Vector Machines (SVM). Gesture, 2001, 23, 349-361.
[16]
Lohmann, R.; Schneider, G.; Wrede, P. Structure optimization of an artificial neural filter detecting membrane-spanning amino acid se-quences. Biopolymers, 1996, 38(1), 13-29.
[http://dx.doi.org/10.1002/(SICI)1097-0282(199601)38:1<13:AID-BIP2>3.0.CO;2-Z] [PMID: 8679941]
[17]
Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci., 2016, 3, 80.
[http://dx.doi.org/10.3389/fenvs.2015.00080]
[18]
Dahl, G.E.; Jaitly, N.; Salakhutdinov, R. Multi-Task Neural Networks for QSAR Predictions arXiv:1406.1231v1, 2014.
[19]
Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276.
[http://dx.doi.org/10.1021/acscentsci.7b00572] [PMID: 29532027]
[20]
Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural net-works. ACS Cent. Sci., 2018, 4(1), 120-131.
[http://dx.doi.org/10.1021/acscentsci.7b00512] [PMID: 29392184]
[21]
Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced Adver-sarial Neural Computer for de novo Molecular Design. J. Chem. Inf. Model., 2018, 58(6), 1194-1204.
[http://dx.doi.org/10.1021/acs.jcim.7b00690] [PMID: 29762023]
[22]
Reymond, J.L.; Van Deursen, R.; Blum, L.C.; Ruddigkeit, L. Chemical space as a source for new drugs. MedChemComm, 2010, 1, 30-38.
[http://dx.doi.org/10.1039/c0md00020e]
[23]
Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today, 2021, 26(1), 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[24]
Duran, O.; Rodriguez, N.; Consalter, L.A. Neural networks for cost estimation of shell and tube heat exchangers. Expert Syst. Appl., 2009, 36, 7435-7440.
[http://dx.doi.org/10.1016/j.eswa.2008.09.014]
[25]
Park, Y.; Goto, D.; Yang, K.F.; Downton, K.; Lecomte, P.; Olson, M.; Mullins, C.D. A literature review of factors affecting price and com-petition in the global pharmaceutical market. Value Health, 2016, 19, A265.
[http://dx.doi.org/10.1016/j.jval.2016.03.816]
[26]
de Jesus, A. AI for Pricing – Comparing 5 Current Applications. EMERJ, 2019, Available from: https://emerj.com/ai-sectoroverviews/ ai-for-pricing-comparing-5-current-applications/
[27]
Chan, H.C.S.; Li, Y.; Dahoun, T.; Vogel, H.; Yuan, S. New binding sites, new opportunities for GPCR drug discovery. Trends Biochem. Sci., 2019, 44(4), 312-330.
[http://dx.doi.org/10.1016/j.tibs.2018.11.011] [PMID: 30612897]
[28]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: Current trends and applica-tions. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[29]
Hayik, S.A.; Dunbrack, R., Jr; Merz, K.M., Jr A mixed QM/MM scoring function to predict protein-ligand binding affinity. J. Chem. Theory Comput., 2010, 6(10), 3079-3091.
[http://dx.doi.org/10.1021/ct100315g] [PMID: 21221417]
[30]
Smith, J.S.; Isayev, O.; Roitberg, A.E. ANI-1: an extensible neural network potential with DFT ac-curacy at force field computational cost. Chem. Sci. (Camb.), 2017, 8(4), 3192-3203.
[http://dx.doi.org/10.1039/C6SC05720A] [PMID: 28507695]
[31]
Zhang, Y.J.; Khorshidi, A.; Kastlunger, G.; Peterson, A.A. The potential for machine learning in hy-brid QM/MM calculations. J. Chem. Phys., 2018, 148(24), 241740.
[http://dx.doi.org/10.1063/1.5029879] [PMID: 29960374]
[32]
Bai, F.; Morcos, F.; Cheng, R.R.; Jiang, H.; Onuchic, J.N. Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis. Proc. Natl. Acad. Sci. USA, 2016, 113(50), E8051-E8058.
[http://dx.doi.org/10.1073/pnas.1615932113] [PMID: 27911825]
[33]
Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLOS Comput. Biol., 2017, 13(1), e1005324.
[http://dx.doi.org/10.1371/journal.pcbi.1005324] [PMID: 28056090]
[34]
Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from het-erogeneous information. Nat. Commun., 2017, 8(1), 573.
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[35]
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule devel-opment in oncology. Oncotarget, 2017, 8(7), 10883-10890.
[http://dx.doi.org/10.18632/oncotarget.14073] [PMID: 28029644]
[36]
Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. druGAN: An advanced gen-erative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm., 2017, 14(9), 3098-3104.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00346] [PMID: 28703000]
[37]
Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep neural nets as a method for quantita-tive structure-activity relationships. J. Chem. Inf. Model., 2015, 55(2), 263-274.
[http://dx.doi.org/10.1021/ci500747n] [PMID: 25635324]
[38]
Kearnes, S.; Goldman, B.; Pande, V. Modeling industrial ADMET data with multitask networks. arXiv, 1606, 08793v3., 2016.
[39]
Schneider, P.; Schneider, G. De novo De novo design at the edge of chaos. J. Med. Chem., 2016, 59(9), 4077-4086.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01849] [PMID: 26881908]
[40]
Gupta, A.; Müller, A.T.; Huisman, B.J.H.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative re-current networks for de novo drug design. Mol. Inform., 2018, 37, 1700111.
[http://dx.doi.org/10.1002/minf.201700111]
[41]
Müller, A.T.; Hiss, J.A.; Schneider, G. Recurrent neural network model for constructive peptide de-sign. J. Chem. Inf. Model., 2018, 58(2), 472-479.
[http://dx.doi.org/10.1021/acs.jcim.7b00414] [PMID: 29355319]
[42]
Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inform., 2018, 37(1-2), 1700153.
[http://dx.doi.org/10.1002/minf.201700153] [PMID: 29319225]
[43]
Hessler, G.; Baringhaus, K.H. Artificial intelligence in drug design. Molecules, 2018, 23(10), 2520.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[44]
Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem., 2012, 4(2), 90-98.
[http://dx.doi.org/10.1038/nchem.1243] [PMID: 22270643]
[45]
Klucznik, T. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem, 2018, 4, 522-532.
[http://dx.doi.org/10.1016/j.chempr.2018.02.002]
[46]
Browne, C.B. A Survey of monte Carlo tree search methods. IEEE T. Comp. Intel. Al, 2017, 4, 1-43.
[47]
Segler, M.H.S.; Waller, M.P. Neural-symbolic machine learning for retrosynthesis and reaction pre-diction. Chemistry, 2017, 23(25), 5966-5971.
[http://dx.doi.org/10.1002/chem.201605499] [PMID: 28134452]
[48]
Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587), 484-489.
[http://dx.doi.org/10.1038/nature16961] [PMID: 26819042]
[49]
Chuang, K.V.; Keiser, M.J. Predicting reaction performance in C–N cross-coupling using machine learning. Science. Science, 2018, 362, 186-190.
[50]
Maryasin, B.; Marquetand, P.; Maulide, N. Machine learning for organic synthesis: Are robots re-placing chemists? Angew. Chem. Int. Ed. Engl., 2018, 57(24), 6978-6980.
[http://dx.doi.org/10.1002/anie.201803562] [PMID: 29701305]
[51]
Steiner, S.; Wolf, J.; Glatzel, S.; Andreou, A.; Granda, J.M.; Keenan, G.; Hinkley, T.; Aragon-Camarasa, G.; Kitson, P.J.; Angelone, D.; Cronin, L. Organic synthesis in a modular robotic system driven by a chemical programming language. Science, 2019, 363, eaav2211.
[52]
Fuhrman, J.A.; Schwalbach, M.S.; Stingl, U. Proteorhodopsins: An array of physiological roles? Nat. Rev. Microbiol., 2008, 6(6), 488-494.
[http://dx.doi.org/10.1038/nrmicro1893] [PMID: 18475306]
[53]
Fooshee, D.; Mood, A.; Gutman, E.; Tavakoli, M.; Urban, G.; Liu, F.; Huynh, N.; Van Vranken, D.; Baldi, P. Deep learning for chemical reaction prediction. Mol. Syst. Des. Eng., 2018, 3, 442-452.
[http://dx.doi.org/10.1039/C7ME00107J]
[54]
Jones, L.D.; Golan, D.; Hanna, S.A.; Ramachandran, M. Artificial intelligence, machine learning and the evolution of healthcare: A bright future or cause for concern? Bone Joint Res., 2018, 7(3), 223-225.
[http://dx.doi.org/10.1302/2046-3758.73.BJR-2017-0147.R1] [PMID: 29922439]
[55]
Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinformatics, 2018, 19(1), 270.
[http://dx.doi.org/10.1186/s12859-018-2264-5] [PMID: 30016950]
[56]
Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 2018, 15(1), 41-51.
[PMID: 29275361]
[57]
Hennessy, S. Use of health care databases in pharmacoepidemiology. Basic Clin. Pharmacol. Toxicol., 2006, 98(3), 311-313.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_368.x] [PMID: 16611207]
[58]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and opportunities in drug dis-covery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[59]
Jasial, S.; Gilberg, E.; Blaschke, T.; Bajorath, J. Machine learning distinguishes with high accuracy between pan-assay interference com-pounds that are promiscuous or represent dark chemical matter. J. Med. Chem., 2018, 61(22), 10255-10264.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01404] [PMID: 30422657]
[60]
Pereira, J.C.; Caffarena, E.R.; Dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 2016, 56(12), 2495-2506.
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[61]
Li, Z.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Wu, X.; Tan, X.; Zhao, J.; Zhong, F.; Wan, X.; Luo, X.; Chen, K.; Jiang, H.; Zheng, M.; Kinome, X.; Kinome, X. A web application for predicting kinome-wide polypharmacology effect of small molecules. Bioinformatics, 2019, 35(24), 5354-5356.
[http://dx.doi.org/10.1093/bioinformatics/btz519] [PMID: 31228181]
[62]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinform., 2018, 19(5), 878-892.
[http://dx.doi.org/10.1093/bib/bbx017] [PMID: 28334136]
[63]
Gönen, M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 2012, 28(18), 2304-2310.
[http://dx.doi.org/10.1093/bioinformatics/bts360] [PMID: 22730431]
[64]
Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Küster, B. The target landscape of clinical kinase inhibi-tors. Mol. Cell. Proteomics, 2017, 16, S14.
[65]
Cabreiro, F.; Au, C.; Leung, K.Y.; Vergara-Irigaray, N.; Cochemé, H.M.; Noori, T.; Weinkove, D.; Schuster, E.; Greene, N.D.E.; Gems, D. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 2013, 153(1), 228-239.
[http://dx.doi.org/10.1016/j.cell.2013.02.035] [PMID: 23540700]
[66]
Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug-target inter-action networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13), i232-i240.
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]
[67]
Wang, W.; Yang, S.; Zhang, X.; Li, J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics, 2014, 30(20), 2923-2930.
[http://dx.doi.org/10.1093/bioinformatics/btu403] [PMID: 24974205]
[68]
Huang, S.Y.; Grinter, S.Z.; Zou, X. Scoring functions and their evaluation methods for protein-ligand docking: Recent advances and future directions. Phys. Chem. Chem. Phys., 2010, 12(40), 12899-12908.
[http://dx.doi.org/10.1039/c0cp00151a] [PMID: 20730182]
[69]
Khamis, M.A.; Gomaa, W.; Ahmed, W.F. Machine learning in computational docking. Artif. Intell. Med., 2015, 63(3), 135-152.
[http://dx.doi.org/10.1016/j.artmed.2015.02.002] [PMID: 25724101]
[70]
Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2015, 5(6), 405-424.
[http://dx.doi.org/10.1002/wcms.1225] [PMID: 27110292]
[71]
Kinnings, S.L.; Liu, N.; Tonge, P.J.; Jackson, R.M.; Xie, L.; Bourne, P.E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J. Chem. Inf. Model., 2011, 51(2), 408-419.
[http://dx.doi.org/10.1021/ci100369f] [PMID: 21291174]
[72]
Wang, C.; Zhang, Y. Improving scoring-docking-screening powers of protein-ligand scoring func-tions using random forest. J. Comput. Chem., 2017, 38(3), 169-177.
[http://dx.doi.org/10.1002/jcc.24667] [PMID: 27859414]
[73]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[74]
Jiménez, J. Škali&#269; M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP: Protein-ligand absolute bind-ing affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[75]
McInnes, C. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol., 2007, 11(5), 494-502.
[http://dx.doi.org/10.1016/j.cbpa.2007.08.033] [PMID: 17936059]
[76]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[77]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12, 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[78]
Kim, K.H.; Kim, N.D.; Seong, B.L. Pharmacophore-based virtual screening: A review of recent ap-plications. Expert Opin. Drug Discov., 2010, 5(3), 205-222.
[http://dx.doi.org/10.1517/17460441003592072] [PMID: 22823018]
[79]
Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discov. Today, 2006, 11(23-24), 1046-1053.
[http://dx.doi.org/10.1016/j.drudis.2006.10.005] [PMID: 17129822]
[80]
Huang, S.Y.; Zou, X. Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions. J. Chem. Inf. Model., 2010, 50(2), 262-273.
[http://dx.doi.org/10.1021/ci9002987] [PMID: 20088605]
[81]
Chen, Y.C. Beware of docking! Trends Pharmacol. Sci., 2015, 36(2), 78-95.
[http://dx.doi.org/10.1016/j.tips.2014.12.001] [PMID: 25543280]
[82]
Xing, J.; Lu, W.; Liu, R.; Wang, Y.; Xie, Y.; Zhang, H.; Shi, Z.; Jiang, H.; Liu, Y.C.; Chen, K.; Jiang, H.; Luo, C.; Zheng, M. Machine-learning-assisted approach for discovering novel inhibitors target-ing bromodomain-containing protein 4. J. Chem. Inf. Model., 2017, 57(7), 1677-1690.
[http://dx.doi.org/10.1021/acs.jcim.7b00098] [PMID: 28636361]
[83]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algo-rithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115] [PMID: 12001221]
[84]
Leach, A.R.; Gillet, V.J.; Lewis, R.A.; Taylor, R. Three-dimensional pharmacophore methods in drug discovery. J. Med. Chem., 2010, 53(2), 539-558.
[http://dx.doi.org/10.1021/jm900817u] [PMID: 19831387]
[85]
Hein, M.; Zilian, D.; Sotriffer, C.A. Docking compared to 3D-pharmacophores: The scoring function challenge. Drug Discov. Today. Technol., 2010, 7, e229-e236.
[http://dx.doi.org/10.1016/j.ddtec.2010.12.003]
[86]
Hessler, G.; Baringhaus, K.H. The scaffold hopping potential of pharmacophores. Drug Discov. Today. Technol., 2010, 7(4), e203-e270.
[http://dx.doi.org/10.1016/j.ddtec.2010.09.001] [PMID: 24103802]
[87]
Dassault Systèmes, BIOVIA Discovery Studio., Available from: https://discover.3ds.com/discovery-studio-visualizer-download
[88]
Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24(13), 1549-1562.
[http://dx.doi.org/10.1002/jcc.10306] [PMID: 12925999]
[89]
Billones, J.B.; Carrillo, M.C.O.; Organo, V.G.; Sy, J.B.A.; Clavio, N.A.B.; Macalino, S.J.Y.; Emnacen, I.A.; Lee, A.P.; Ko, P.K.L.; Concep-cion, G.P. In silico discovery and in vitro activity of inhibi-tors against Mycobacterium tuberculosis 7,8-diaminopelargonic acid synthase (Mtb BioA). Drug Des. Devel. Ther., 2017, 11, 563-574.
[http://dx.doi.org/10.2147/DDDT.S119930] [PMID: 28280303]
[90]
Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R.P. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst., 2015, 2, 224-2232.
[91]
Coley, C.W.; Barzilay, R.; Green, W.H.; Jaakkola, T.S.; Jensen, K.F. Convolutional Embedding of Attributed Molecular Graphs for Physi-cal Property Prediction. J. Chem. Inf. Model., 2017, 57(8), 1757-1772.
[http://dx.doi.org/10.1021/acs.jcim.6b00601] [PMID: 28696688]
[92]
Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolay-ers. Nat. Protoc., 2007, 2(9), 2111-2119.
[http://dx.doi.org/10.1038/nprot.2007.303] [PMID: 17853866]
[93]
Tian, S.; Li, Y.; Wang, J.; Zhang, J.; Hou, T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol. Pharm., 2011, 8(3), 841-851.
[http://dx.doi.org/10.1021/mp100444g] [PMID: 21548635]
[94]
Lombardo, F.; Jing, Y. In silico prediction of volume of distribution in humans. Extensive data set and the exploration of linear and non-linear methods coupled with molecular interaction fields descriptors. J. Chem. Inf. Model., 2016, 56(10), 2042-2052.
[http://dx.doi.org/10.1021/acs.jcim.6b00044] [PMID: 27602694]
[95]
Zientek, M.; Stoner, C.; Ayscue, R.; Klug-McLeod, J.; Jiang, Y.; West, M.; Collins, C.; Ekins, S. In-tegrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem. Res. Toxicol., 2010, 23(3), 664-676.
[http://dx.doi.org/10.1021/tx900417f] [PMID: 20151638]
[96]
Zhang, H.; Chen, Q.Y.; Xiang, M.L.; Ma, C.Y.; Huang, Q.; Yang, S.Y. In silico prediction of mito-chondrial toxicity by using GA-CG-SVM approach. Toxicol. In Vitro, 2009, 23(1), 134-140.
[http://dx.doi.org/10.1016/j.tiv.2008.09.017] [PMID: 18940245]
[97]
Hop, P.; Allgood, B.; Yu, J. Geometric deep learning autonomously learns chemical features that outperform those engineered by domain experts. Mol. Pharm., 2018, 15(10), 4371-4377.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01144] [PMID: 29863875]
[98]
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J. Comput. Aided Mol. Des., 2016, 30(8), 595-608.
[http://dx.doi.org/10.1007/s10822-016-9938-8] [PMID: 27558503]
[99]
Lombardo, F.; Desai, P.V.; Arimoto, R.; Desino, K.E.; Fischer, H.; Keefer, C.E.; Petersson, C.; Win-iwarter, S.; Broccatelli, F. In silico Ab-sorption, Distribution, Metabolism, Excretion, and Pharmacokinet-ics (ADME-PK): Utility and best practices. An Industry Perspective from the International Consortium for Innovation through Quality in Pharmaceutical Development. J. Med. Chem., 2017, 60(22), 9097-9113.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00487] [PMID: 28609624]
[100]
O’Boyle, N.M.; Boström, J.; Sayle, R.A.; Gill, A. Using matched molecular series as a predictive tool to optimize biological activity. J. Med. Chem., 2014, 57(6), 2704-2713.
[http://dx.doi.org/10.1021/jm500022q] [PMID: 24601597]
[101]
Gunaydin, H.; Altman, M.D.; Ellis, J.M.; Fuller, P.; Johnson, S.A.; Lahue, B.; Lapointe, B. Strategy for extending half-life in drug design and its significance. ACS Med. Chem. Lett., 2018, 9(6), 528-533.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00018] [PMID: 29937977]
[102]
Kramer, C.; Fuchs, J.E.; Whitebread, S.; Gedeck, P.; Liedl, K.R. Matched molecular pair analysis: Significance and the impact of experi-mental uncertainty. J. Med. Chem., 2014, 57(9), 3786-3802.
[http://dx.doi.org/10.1021/jm500317a] [PMID: 24738976]
[103]
Li, H.; Hou, J.; Adhikari, B.; Lyu, Q.; Cheng, J. Deep learning methods for protein torsion angle prediction. BMC Bioinformatics, 2017, 18(1), 417.
[http://dx.doi.org/10.1186/s12859-017-1834-2] [PMID: 28923002]
[104]
Sahu, A.; Agrawal, R.K.; Pandey, R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg. Chem., 2019, 88, 102939.
[http://dx.doi.org/10.1016/j.bioorg.2019.102939] [PMID: 31028993]
[105]
Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein-protein interaction chal-lenge. Nat. Rev. Drug Discov., 2016, 15(8), 533-550.
[http://dx.doi.org/10.1038/nrd.2016.29] [PMID: 27050677]
[106]
Cukuroglu, E.; Engin, H.B.; Gursoy, A.; Keskin, O. Hot spots in protein-protein interfaces: Towards drug discovery. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 165-173.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.06.003] [PMID: 24997383]
[107]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[108]
Labbé, C.M.; Kuenemann, M.A.; Zarzycka, B.; Vriend, G.; Nicolaes, G.A.F.; Lagorce, D.; Miteva, M.A.; Villoutreix, B.O.; Sperandio, O. iPPI-DB: an online database of modulators of protein-protein inter-actions. Nucleic Acids Res., 2016, 44(D1), D542-D547.
[http://dx.doi.org/10.1093/nar/gkv982] [PMID: 26432833]
[109]
Wang, J.; Luo, C.; Shan, C.; You, Q.; Lu, J.; Elf, S.; Zhou, Y.; Wen, Y.; Vinkenborg, J.L.; Fan, J.; Kang, H.; Lin, R.; Han, D.; Xie, Y.; Kar-pus, J.; Chen, S.; Ouyang, S.; Luan, C.; Zhang, N.; Ding, H.; Merkx, M.; Liu, H.; Chen, J.; Jiang, H.; He, C. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat. Chem., 2015, 7(12), 968-979.
[http://dx.doi.org/10.1038/nchem.2381] [PMID: 26587712]
[110]
Maheshwari, S.; Brylinski, M. Template-based identification of protein-protein interfaces using eFindSitePPI. Methods, 2016, 93, 64-71.
[http://dx.doi.org/10.1016/j.ymeth.2015.07.017] [PMID: 26235816]
[111]
De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.; Visen-tin, D.; van den Driessche, G.; Lakshminarayanan, B.; Meyer, C.; Mackinder, F.; Bouton, S.; Ayoub, K.; Chopra, R.; King, D.; Karthikesal-ingam, A.; Hughes, C.O.; Raine, R.; Hughes, J.; Sim, D.A.; Egan, C.; Tufail, A.; Montgomery, H.; Hassabis, D.; Rees, G.; Back, T.; Khaw, P.T.; Suleyman, M.; Cornebise, J.; Keane, P.A.; Ronneberger, O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med., 2018, 24(9), 1342-1350.
[http://dx.doi.org/10.1038/s41591-018-0107-6] [PMID: 30104768]
[112]
Yauney, G.; Shah, P. Reinforcement learning with action-derived rewards for chemotherapy and clinical trial dosing regimen selection. Proc. 3rd Mach. Learn. Healthc. Conf., 2018, pp. 161-226.
[113]
Ohnstad, H.O.; Borgen, E.; Falk, R.S.; Lien, T.G.; Aaserud, M.; Sveli, M.A.T.; Kyte, J.A.; Kristen-sen, V.N.; Geitvik, G.A.; Schlichting, E.; Wist, E.A.; Sørlie, T.; Russnes, H.G.; Naume, B. Prognostic val-ue of PAM50 and risk of recurrence score in patients with early-stage breast cancer with long-term follow-up. Breast Cancer Res., 2017, 19(1), 120.
[http://dx.doi.org/10.1186/s13058-017-0911-9] [PMID: 29137653]
[114]
Shimizu, H.; Nakayama, K.I.A.A. 23 gene-based molecular prognostic score precisely predicts over-all survival of breast cancer patients. EBioMedicine, 2019, 46, 150-159.
[http://dx.doi.org/10.1016/j.ebiom.2019.07.046] [PMID: 31358476]
[115]
Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.; Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.; Purushotham, A.; Børresen-Dale, A.L.; Brenton, J.D.; Tavaré, S.; Caldas, C.; Aparicio, S.; Speers, C.; Watson, P.; Blamey, R.; Green, A.; MacMillan, D.; Rakha, E.; Gillett, C.; Grigoriadis, A.; De Rinaldis, E.; Tutt, A.; Parisien, M.; Troup, S.; Chan, D.; Fielding, C.; Maia, A.T.; McGuire, S.; Osborne, M.; Sayale-ro, S.M.; Spiteri, I.; Hadfield, J.; Bell, L.; Chow, K.; Gale, N.; Ko-valik, M.; Ng, Y.; Prentice, L.; Tavaré, S.; Markowetz, F.; Langerød, A.; Provenzano, E.; Purushotham, A.; Børresen-Dale, A.L.; Caldas, C. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403), 346-352.
[http://dx.doi.org/10.1038/nature10983] [PMID: 22522925]
[116]
Merget, B.; Turk, S.; Eid, S.; Rippmann, F.; Fulle, S. Profiling prediction of kinase inhibitors: To-ward the virtual assay. J. Med. Chem., 2017, 60(1), 474-485.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01611] [PMID: 27966949]
[117]
Grys, B.T.; Lo, D.S.; Sahin, N.; Kraus, O.Z.; Morris, Q.; Boone, C.; Andrews, B.J. Machine learning and computer vision approaches for phenotypic profiling. J. Cell Biol., 2017, 216(1), 65-71.
[http://dx.doi.org/10.1083/jcb.201610026] [PMID: 27940887]
[118]
Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today, 2018, 23(6), 1241-1250.
[http://dx.doi.org/10.1016/j.drudis.2018.01.039] [PMID: 29366762]
[119]
Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detec-tion of heart failure onset. J. Am. Med. Inform. Assoc., 2017, 24(2), 361-370.
[http://dx.doi.org/10.1093/jamia/ocw112] [PMID: 27521897]
[120]
Labovitz, D.L.; Shafner, L.; Reyes Gil, M.; Virmani, D.; Hanina, A. Using artificial intelligence to reduce the risk of nonadherence in pa-tients on anticoagulation therapy. Stroke, 2017, 48(5), 1416-1419.
[http://dx.doi.org/10.1161/STROKEAHA.116.016281] [PMID: 28386037]
[121]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[122]
Li, D.; Chi, B.; Wang, W.W.; Gao, J.M.; Wan, J. Exploring the possible binding mode of trisubsti-tuted benzimidazoles analogues in silico for novel drug designtargeting Mtb FtsZ. Med. Chem. Res., 2017, 26, 153-169.
[http://dx.doi.org/10.1007/s00044-016-1734-4]
[123]
Jamal, S.; Khubaib, M.; Gangwar, R.; Grover, S.; Grover, A.; Hasnain, S.E. Artificial intelligence and machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculo-sis. Sci. Rep., 2020, 10, 1-16.
[124]
Lind, A.P.; Anderson, P.C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One, 2019, 14(7), e0219774.
[http://dx.doi.org/10.1371/journal.pone.0219774] [PMID: 31295321]
[125]
Wang, Y.; Wang, Z.; Xu, J.; Li, J.; Li, S.; Zhang, M.; Yang, D. Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat. Commun., 2018, 9(1), 3192.
[http://dx.doi.org/10.1038/s41467-018-05495-9] [PMID: 30093685]
[126]
Leventakos, K.; Helgeson, J.; Mansfield, A.S.; Deering, E.; Schwecke, A.; Adjei, A.; Molina, J.; Hocum, C.; Halfdanarson, T.; Marks, R.; Parikh, K.; Pomerleau, K.; Coverdill, S.; Rammage, M.; Haddad, T. Implementation of Artificial Intelligence (AI) for Lung Cancer Clinical Trial Matching in a Tertiary Cancer Center. Ann. Oncol., 2019, 30, ii74.
[http://dx.doi.org/10.1093/annonc/mdz065]
[127]
Pantuck, A.J.; Lee, D-K.; Kee, T.; Wang, P.; Lakhotia, S.; Silverman, M.H.; Mathis, C.; Drakaki, A.; Belldegrun, A.S.; Ho, C-M.; Ho, D. Artificial intelligence: Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform (Adv. Therap. 6/2018). Adv. Ther., 2018, 1, 1870020.
[http://dx.doi.org/10.1002/adtp.201870020]
[128]
Gulhan, D.C.; Lee, J.J.K.; Melloni, G.E.M.; Cortés-Ciriano, I.; Park, P.J. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet., 2019, 51(5), 912-919.
[http://dx.doi.org/10.1038/s41588-019-0390-2] [PMID: 30988514]
[129]
Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How Machine learning will transform biomedicine. Cell, 2020, 181(1), 92-101.
[http://dx.doi.org/10.1016/j.cell.2020.03.022] [PMID: 32243801]
[130]
Watson, O.P.; Cortes-Ciriano, I.; Taylor, A.R.; Watson, J.A. A decision-theoretic approach to the evaluation of machine learning algo-rithms in computational drug discovery. Bioinformatics, 2019, 35(22), 4656-4663.
[http://dx.doi.org/10.1093/bioinformatics/btz293] [PMID: 31070704]
[131]
Rutering, J.; Ilmer, M.; Recio, A.; Coleman, M.; Vykoukal, J.; Alt, E.; Orleans, N. Mutational land-scape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2016, 5, 1-8.
[132]
BIO industry analysis. Clinical Development Success Rates 2006- 2015. Bio Ind. Anal. Rep., 2016. Available from: https://www.bio.org/sites/default/files/Clinical
[133]
Abramoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med., 2018, 1, 39.
[134]
Chan, B. The rise of artificial intelligence and the crisis of moral passivity. AI Soc., 2020, 35, 991-993.
[http://dx.doi.org/10.1007/s00146-020-00953-9]
[135]
Fleming, N. How artificial intelligence is changing drug discovery. Nature, 2018, 557(7707), S55-S57.
[http://dx.doi.org/10.1038/d41586-018-05267-x] [PMID: 29849160]
[136]
Yu, K.H.; Kohane, I.S. Framing the challenges of artificial intelligence in medicine. BMJ Qual. Saf., 2019, 28(3), 238-241.
[http://dx.doi.org/10.1136/bmjqs-2018-008551] [PMID: 30291179]
[137]
Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prog-nosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ, 2015, 350, g7594.
[http://dx.doi.org/10.1136/bmj.g7594] [PMID: 25569120]
[138]
Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.; Lee, S.Y.; Wong, E.Y.M.; Sabanayagam, C.; Baskaran, M.; Ibrahim, F.; Tan, N.C.; Finkelstein, E.A.; Lamoureux, E.L.; Wong, I.Y.; Bressler, N.M.; Sivaprasad, S.; Varma, R.; Jonas, J.B.; He, M.G.; Cheng, C.Y.; Cheung, G.C.M.; Aung, T.; Hsu, W.; Lee, M.L.; Wong, T.Y. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal im-ages from multiethnic popula-tions with diabetes. JAMA, 2017, 318(22), 2211-2223.
[http://dx.doi.org/10.1001/jama.2017.18152] [PMID: 29234807]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy