Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Potential Papain-like Protease Inhibitors Against COVID-19: A Comprehensive In Silico Based Review

Author(s): Neetu Agrawal*, Shilpi Pathak and Ahsas Goyal

Volume 25, Issue 11, 2022

Published on: 14 January, 2022

Page: [1838 - 1858] Pages: 21

DOI: 10.2174/1386207325666211122123602

Price: $65

Abstract

The entire world has been in a battle against the COVID-19 pandemic since its first appearance in December 2019. Thus researchers are desperately working to find an effective and safe therapeutic agent for its treatment. The multifunctional coronavirus enzyme papain-like protease (PLpro) is a potential target for drug discovery to combat the ongoing pandemic responsible for cleavage of the polypeptide, deISGylation, and suppression of host immune response. The present review collates the in silico studies performed on various FDA-approved drugs, chemical compounds, and phytochemicals from various drug databases and represents the compounds possessing the potential to inhibit PLpro. Thus this review can provide quick access to a potential candidate to medicinal chemists to perform in vitro and in vivo experiments who are thriving to find the effective agents for the treatment of COVID-19.

Keywords: COVID-19, SARS-CoV-2, Papain-like protease, PLpro, in silico, molecular docking.

Graphical Abstract

[1]
Murugan, N.A.; Pandian, C.J.; Jeyakanthan, J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in cmparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn., 2020, 44, 15-26.
[PMID: 32543978]
[2]
Petushkova, A.I.; Zamyatnin, A.A., Jr Papain-like proteases as coronaviral drug targets: Current inhibitors, opportunities, and limitations. Pharmaceuticals (Basel), 2020, 13(10), 277.
[http://dx.doi.org/10.3390/ph13100277] [PMID: 32998368]
[4]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by de-signed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[5]
Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[6]
Mhatre, S.; Naik, S.; Patravale, V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput. Biol. Med., 2021, 129, 104137.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104137] [PMID: 33302163]
[7]
Swargiary, A.; Mahmud, S.; Saleh, M.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: An in silico approach to combat COVID-19. J. Biomol. Struct. Dyn., 2020, 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1835729] [PMID: 33089730]
[8]
Hajbabaie, R.; Harper, M.T.; Rahman, T. Establishing an analogue based in silico pipeline in the pursuit of novel inhibitory scaffolds against the SARS coronavirus 2 papain-like protease. Molecules, 2021, 26(4), 1134.
[http://dx.doi.org/10.3390/molecules26041134] [PMID: 33672721]
[9]
Hiremath, S.; Kumar, H.D.V.; Nandan, M.; Mantesh, M.; Shankarappa, K.S.; Venkataravanappa, V.; Basha, C.R.J.; Reddy, C.N.L. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech, 2021, 11, 44.
[10]
Shah, A.; Patel, V.; Parmar, B. Discovery of some antiviral natural products to fight against novel corona virus (SARS-CoV-2) using in silico approach. Comb. Chem. High Throughput Screen., 2020, 23, 1-10.
[http://dx.doi.org/10.2174/1386207323666200902135928] [PMID: 32881661]
[11]
Siddiqui, S.; Upadhyay, S.; Ahmad, R.; Gupta, A.; Srivastava, A.; Trivedi, A.; Husain, I.; Ahmad, B.; Ahamed, M.; Khan, M.A. Virtual screening of phytoconstituents from miracle herb Nigella sativa targeting nucleocapsid protein and papain-like protease of SARS-CoV-2 for COVID-19 treatment. J. Biomol. Struct. Dyn., 2020, 1-21.
[http://dx.doi.org/10.1080/07391102.2020.1852117] [PMID: 33289456]
[12]
Shawan, M.M.A.K.; Halder, S.K.; Hasan, M.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak. Bull. Natl. Res. Cent., 2021, 45(1), 27.
[http://dx.doi.org/10.1186/s42269-020-00479-6] [PMID: 33495684]
[13]
Srivastava, A.; Siddiqui, S.; Ahmad, R.; Mehrotra, S.; Ahmad, B.; Srivastava, A.N. Exploring nature’s bounty: Identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. J. Biomol. Struct. Dyn., 2020, 1-51.
[PMID: 33246398]
[14]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpe-noids for COVID-19. Comput. Biol. Med., 2020, 124, 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[15]
Baildya, N.; Khan, A.A.; Ghosh, N.N.; Dutta, T.; Chattopadhyay, A.P. Screening of potential drug from Azadirachta Indica (Neem) ex-tracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J. Mol. Struct., 2021, 1227, 129390.
[http://dx.doi.org/10.1016/j.molstruc.2020.129390] [PMID: 33041371]
[16]
Balkrishna, A.; Mittal, R.; Arya, V. Computational evidences of phytochemical mediated disruption of plpro driven replication of SARS-CoV-2: A therapeutic approach against COVID-19. Curr. Pharm. Biotechnol., 2020, 21, 1-9.
[PMID: 33176643]
[17]
Naidoo, D.; Roy, A.; Kar, P.; Mutanda, T.; Anandraj, A. Cyanobacterial metabolites as promising drug leads against the M pro and PL pro of SARS-CoV-2: An in silico analysis. J. Biomol. Struct. Dyn., 2020, 1-13.
[PMID: 32691680]
[18]
Quimque, M.T.J.; Notarte, K.I.R.; Fernandez, R.A.T.; Mendoza, M.A.O.; Liman, R.A.D.; Lim, J.A.K.; Pilapil, L.A.E.; Ong, J.K.H.; Pastra-na, A.M.; Khan, A.; Wei, D-Q.; Macabeo, A.P.G. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J. Biomol. Struct. Dyn., 2021, 39(12), 4316-4333.
[PMID: 32476574]
[19]
Elekofehinti, O.O.; Iwaloye, O.; Josiah, S.S.; Lawal, A.O.; Akinjiyan, M.O.; Ariyo, E.O. Molecular docking studies, molecular dynamics and ADME/Tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol. Divers., 2020, 25(3), 1761-1773.
[PMID: 33201386]
[20]
Cavasotto, C.N.; Di Filippo, J.I. in silico drug repurposing for COVID-19: Targeting SARS-CoV-2 proteins through docking and consensus ranking. Mol. Inform., 2021, 40(1), e2000115.
[http://dx.doi.org/10.1002/minf.202000115] [PMID: 32722864]
[21]
Delre, P.; Caporuscio, F.; Saviano, M.; Mangiatordi, G.F. Repurposing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease. Front Chem., 2020, 8, 594009.
[http://dx.doi.org/10.3389/fchem.2020.594009] [PMID: 33304884]
[22]
Jamalan, M.; Barzegari, E.; Gholami-Borujeni, F. Structure-based screening to discover new inhibitors for papain-like proteinase of SARS-CoV-2: An in silico study. J. Proteome Res., 2021, 20(1), 1015-1026.
[http://dx.doi.org/10.1021/acs.jproteome.0c00836] [PMID: 33350309]
[23]
Murugan, N.A.; Kumar, S.; Jeyakanthan, J.; Srivastava, V. Searching for target-specific and multi-targeting organics for Covid-19 in the Drugbank database with a double scoring approach. Sci. Rep., 2020, 10(1), 19125.
[http://dx.doi.org/10.1038/s41598-020-75762-7] [PMID: 33154404]
[24]
Rajpoot, S.; Alagumuthu, M.; Baig, M.S. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr. Res. Struct. Biol., 2021, 3, 9-18.
[http://dx.doi.org/10.1016/j.crstbi.2020.12.001] [PMID: 33319212]
[25]
Mahdian, S.; Ebrahim-Habibi, A.; Zarrabi, M. Drug repurposing using computational methods to identify therapeutic options for COVID-19. J. Diabetes Metab. Disord., 2020, 19, 1-9.
[http://dx.doi.org/10.1007/s40200-020-00546-9] [PMID: 32837954]
[26]
Kandeel, M.; Abdelrahman, A.H.M.; Oh-Hashi, K.; Ibrahim, A.; Venugopala, K.N.; Morsy, M.A.; Ibrahim, M.A.A. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J. Biomol. Struct. Dyn., 2020, 39(14), 5129-5136.
[http://dx.doi.org/10.1080/07391102.2020.1784291] [PMID: 32597315]
[27]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J-W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[28]
Pang, J.; Gao, S.; Sun, Z.; Yang, G. Discovery of small molecule PLpro inhibitor against COVID-19 using structure-based virtual screen-ing, molecular dynamics simulation, and molecular mechanics/generalized born surface area (MM/GBSA) calculation. Struct. Chem., 2020, 32, 1-8.
[http://dx.doi.org/10.1007/s11224-020-01665-y] [PMID: 33106741]
[29]
AlAjmi, M.F.; Azhar, A.; Owais, M.; Rashid, S.; Hasan, S.; Hussain, A.; Rehman, M.T. Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of COVID-19. J. Biomol. Struct. Dyn., 2020, 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1799865] [PMID: 32729392]
[30]
Bhati, S. Structure-based drug designing of naphthalene based SARS-CoV PLpro inhibitors for the treatment of COVID-19. Heliyon, 2020, 6(11), e05558.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05558] [PMID: 33251371]
[31]
Bosken, Y.K.; Cholko, T.; Lou, Y-C.; Wu, K-P.; Chang, C.A. Insights into dynamics of inhibitor and ubiquitin-like protein binding in SARS-CoV-2 papain-like protease. Front. Mol. Biosci., 2020, 7, 174.
[http://dx.doi.org/10.3389/fmolb.2020.00174] [PMID: 32850963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy